首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine phosphorylation of multiple platelet proteins is stimulated by thrombin and other agonists that cause platelet aggregation and secretion. The phosphorylation of a subset of these proteins, including a protein tyrosine kinase, pp125FAK, is dependent on the platelet aggregation that follows fibrinogen binding to integrin alpha IIb beta 3. In this report, we examined whether fibrinogen binding, per se, triggers a process of tyrosine phosphorylation in the absence of exogenous agonists. Binding of soluble fibrinogen was induced with Fab fragments of an anti-beta 3 antibody (anti-LIBS6) that directly exposes the fibrinogen binding site in alpha IIb beta3. Proteins of 50-68 KD and 140 kD became phosphorylated on tyrosine residues in a fibrinogen- dependent manner. This response did not require prostaglandin synthesis, an increase in cytosolic free calcium, platelet aggregation or granule secretion, nor was it associated with tyrosine phosphorylation of pp125FAK. Tyrosine phosphorylation of the 50-68-kD and 140-kD proteins was also observed when (a) fibrinogen binding was stimulated by agonists such as epinephrine, ADP, or thrombin instead of by anti-LIBS6; (b) fragment X, a dimeric plasmin-derived fragment of fibrinogen was used instead of fibrinogen; or (c) alpha IIb beta 3 complexes were cross-linked by antibodies, even in the absence of fibrinogen. In contrast, no tyrosine phosphorylation was observed when the ligand consisted of monomeric cell recognition peptides derived from fibrinogen (RGDS or gamma 400-411). Fibrinogen-dependent tyrosine phosphorylation was inhibited by cytochalasin D. These studies demonstrate that fibrinogen binding to alpha IIb beta 3 initiates a process of tyrosine phosphorylation that precedes platelet aggregation and the phosphorylation of pp125FAK. This reaction may depend on the oligomerization of integrin receptors and on the state of actin polymerization, organizational processes that may juxtapose tyrosine kinases with their substrates.  相似文献   

2.
Outside-in signaling mediated by the integrin alpha(IIb)beta(3) (GPIIbIIIa) is critical to platelet function and has been shown to involve the phosphorylation of tyrosine residues on the cytoplasmic tail of beta(3). To identify proteins that bind directly to phosphorylated beta(3), we utilized an affinity column consisting of a peptide modeled on the tyrosine-phosphorylated cytoplasmic domain of beta(3). Tandem mass spectrometric sequencing and immunoblotting demonstrated that Shc was the primary protein binding to phosphorylated beta(3). To determine the involvement of Shc in outside-in alpha(IIb)beta(3) signaling, the phosphorylation of Shc during platelet aggregation was examined; transient Shc phosphorylation was observed when thrombin-stimulated platelets were allowed to aggregate or when aggregation was induced by an LIBS (ligand-induced binding site) antibody, D3. Moreover, Shc was co-immunoprecipitated with tyrosine-phosphorylated beta(3) in detergent lysates of aggregated platelets. Using purified, recombinant protein, it was found that the binding of Shc to monophosphorylated (C-terminal tyrosine) and diphosphorylated beta(3) peptides was direct, demonstrating Shc recognition motifs on phospho-beta(3). Aggregation-induced Shc phosphorylation was also observed to be robust in platelets from wild-type mice, but not in those from mice expressing (Y747F,Y759F) beta(3), which are defective in outside-in alpha(IIb)beta(3) signaling. Thus, Shc is the primary downstream signaling partner of beta(3) in its tyrosine phosphorylation outside-in signaling pathway.  相似文献   

3.
Platelet activation by collagen depends principally on two receptors, alpha(2)beta(1) integrin (GPIa-IIa) and GPVI. During this activation, the nonreceptor protein tyrosine kinase pp72(syk) is rapidly phosphorylated, but the precise contribution of alpha(2)beta(1) integrin and GPVI to signaling for this phosphorylation is not clear. We have recently found that proteolysis of platelet alpha(2)beta(1) integrin by the snake venom metalloproteinase, jararhagin, results in inhibition of collagen-induced platelet aggregation and pp72(syk) phosphorylation. In order to verify whether the treatment of platelets with jararhagin had any effect on GPVI signaling, in this study we stimulated platelets treated with either jararhagin or anti-alpha(2)beta(1) antibody with two GPVI agonists, an antibody to GPVI and convulxin. Platelet shape change and phosphorylation of pp72(syk) by both GPVI agonists was preserved, as was the structure and function of GPVI shown by (125)I-labeled convulxin binding to immunoprecipitated GPVI from jararhagin-treated platelets. In contrast, defective platelet aggregation in response to GPVI agonists occurred in both jararhagin-treated and alpha(2)beta(1)-blocked platelets. This apparent cosignaling role of alpha(2)beta(1) integrin for platelet aggregation suggests the possibility of a topographical association of this integrin with GPVI. We found that both platelet alpha(2)beta(1) integrin and GPVI coimmunoprecipitated with alpha(IIb)beta(3) integrin. Since platelet aggregation requires activation of alpha(IIb)beta(3) integrin, defective aggregation in the absence of alpha(2)beta(1) suggests that this receptor may provide a signaling link between GPVI and alpha(IIb)beta(3). Our study therefore demonstrates that platelet signaling leading to pp72(syk) phosphorylation initiated with GPVI engagement by either convulxin or GPVI antibody does not depend on alpha(2)beta(1) integrin. However, alpha(IIb)beta(3) integrin may, in this model, require functional alpha(2)beta(1) integrin for its activation.  相似文献   

4.
In a physiological milieu platelets continue to be exposed to agonists long after clot formation. We studied the regulation of postaggregation events consequent on protease-activated receptor (PAR) 1 ligation with either thrombin or the thrombin receptor-activating peptide (TRAP). Stimulation with TRAP (20 microM) but not with thrombin (1 U/ml) for 15 min evoked platelet disaggregation by about 30% and downregulation of high-affinity fibrinogen binding sites on integrin alpha(IIb)beta(3) to nearly prestimulation levels. Concurrently, only TRAP disorganized the actin-based cytoskeleton, with decrease in the cytoskeletal content of focal contact-associated proteins like integrin alpha(IIb)beta(3), Src, and focal adhesion kinase (FAK). While protein tyrosine kinases were activated during the initial period of platelet aggregation with either agonist, stimulation of protein tyrosine phosphatases determined the successive phase of reduced phosphotyrosine content. SHP-1, an abundant protein tyrosine phosphatase in the platelets, was tyrosine phosphorylated on challenge of PAR-1 and coprecipitated with two unidentified tyrosine phosphorylated proteins of 140 and 60 kDa; in addition, SHP-1 tyrosine phosphorylation (which is associated with enhanced phosphatase activity) was sustained until 15 min. Activity of calpain was upregulated following incubation with thrombin and not with TRAP. Collectively, these data suggest that signaling pathways elicited by PAR-1 agonists thrombin and TRAP are markedly different, which could have important implications on late platelet responses.  相似文献   

5.
Estrogen receptor phosphorylation   总被引:20,自引:0,他引:20  
Lannigan DA 《Steroids》2003,68(1):1-9
Estrogen receptor alpha (ERalpha) is phosphorylated on multiple amino acid residues. For example, in response to estradiol binding, human ERalpha is predominately phosphorylated on Ser-118 and to a lesser extent on Ser-104 and Ser-106. In response to activation of the mitogen-activated protein kinase pathway, phosphorylation occurs on Ser-118 and Ser-167. These serine residues are all located within the activation function 1 region of the N-terminal domain of ERalpha. In contrast, activation of protein kinase A increases the phosphorylation of Ser-236, which is located in the DNA-binding domain. The in vivo phosphorylation status of Tyr-537, located in the ligand-binding domain, remains controversial. In this review, I present evidence that these phosphorylations occur, and identify the kinases thought to be responsible. Additionally, the functional importance of ERalpha phosphorylation is discussed.  相似文献   

6.
We have analyzed tyrosine phosphorylation associated with retraction of the fibrin clot by washed platelets in purified fibrinogen. Retraction was dependent on integrin alpha(IIb)beta(3), based on absence of retraction of alpha(IIb)beta(3)-deficient thrombasthenic platelets. However, only a subset of alpha(IIb)beta(3)-blocking antibodies or peptides were able to inhibit retraction, suggesting a differential engagement of alpha(IIb)beta(3) in fibrin clot retraction versus aggregation. Immunoblotting demonstrated a phosphorylated protein pattern comparable with aggregation at early time points. However, as opposed to aggregation, tyrosine phosphorylation decreased rapidly in parallel to retraction (up to 60 min). Dephosphorylation was alpha(IIb)beta(3)-dependent, since it was blocked by alpha(IIb)beta(3)-specific inhibitors and was absent in thrombasthenic platelets. Inhibition of platelet clot retraction by phenyl-arsine oxide and peroxovanadate, suggested a role for tyrosine phosphatases. Cytochalasin D and E (5 microm) blocked fibrin clot retraction and tyrosine dephosphorylation, suggesting regulation by actin cytoskeleton assembly. Tyrosine phosphatase activities were found associated with clot retraction using the "in-gel" tyrosine phosphatase assay; however, none were alpha(IIb)beta(3)-dependent. An 85-kDa protein and to a lesser degree "Src" showed the closest dose-dependent correlation between inhibition of tyrosine dephosphorylation and inhibition of retraction. We thus postulate that alpha(IIb)beta(3) engagement in fibrin clot retraction drives, in an actin cytoskeleton-dependent manner, the interaction of tyrosine phosphatases and of the tyrosine-phosphorylated substrates 85-kDa protein and Src, the dephosphorylation of which regulates the force generation and/or transmission required for full contraction of the fibrin matrix.  相似文献   

7.
Ohmori T  Yatomi Y  Inoue K  Satoh K  Ozaki Y 《Biochemistry》2000,39(19):5797-5807
The newly described adapter molecule p130 Crk-associated substrate (Cas) has been reported to contribute to cytoskeletal organization through assembly of actin filaments and to be pivotal in embryonic development and in oncogene-mediated transformation. We characterized the regulation of Cas tyrosine phosphorylation in highly differentiated, anucleate platelets. Phospholipase C-activating receptor agonists, including collagen, thrombin receptor-activating peptide (TRAP), and U46619 (a thromboxane A2 analogue), and A23187 (a Ca2+ ionophore) induced rapid Cas tyrosine phosphorylation in platelets. 12-O-Tetradecanoylphorbol 13-acetate and 1-oleoyl-2-acetyl-sn-glycerol, protein kinase C (PKC) activators, also induced Cas tyrosine phosphorylation, albeit sluggishly. Cas tyrosine phosphorylation induced by collagen or TRAP was transient in aggregating platelets; Cas became dephosphorylated in a manner dependent on integrin alpha IIb beta 3-mediated aggregation. While BAPTA-AM (an intracellular Ca2+ chelator) inhibited Cas phosphorylation induced by collagen or TRAP, Ro31-8220 (a PKC inhibitor) rather prolonged it. Under the conditions, this PKC inhibitor suppressed platelet aggregation but not intracellular Ca2+ mobilization. In contrast to Cas involvement in focal adhesions in other cells, platelet Cas phosphorylation preceded the activation of focal adhesion kinase (FAK), and blockage of alpha IIb beta 3-mediated platelet aggregation with a GRGDS peptide resulted in prolongation of stimulation-dependent Cas tyrosine phosphorylation but in suppression of FAK tyrosine phosphorylation. Furthermore, TRAP-induced Cas phosphorylation was insensitive to cytochalasin D, an actin polymerization inhibitor. The failure of FAK to associate with Cas in immunoprecipitation studies also suggests that Cas tyrosine phosphorylation is independent of FAK activation. Of the signaling molecules investigated in this study, Src seemed to associate with Cas. Finally, Cas existed mainly in cytosol and membrane cytoskeleton fractions in the resting state, and remained unchanged during platelet aggregation, when FAK translocated to the cytoskeletal fraction. Our findings on platelet Cas suggest that (i) rapid Cas tyrosine phosphorylation occurs following phosphoinositide turnover by receptor-mediated agonists and may be mediated by intracellular Ca2+ mobilization; (ii) PKC activation, by itself, may elicit sluggish Cas phosphorylation; (iii) Cas tyrosine dephosphorylation, but not phosphorylation, is dependent on integrin alpha IIb beta 3-mediated aggregation; and (iv) Cas is not involved in cytoskeletal reorganization. Anucleate platelets seem to provide a unique model system to fully elucidate the functional role(s) of Cas.  相似文献   

8.
Integrin tyrosine phosphorylation in platelet signaling.   总被引:9,自引:0,他引:9  
The beta 3 integrin cytoplasmic tyrosine (ICY) motif of alpha IIb beta 3 becomes tyrosine phosphorylated during platelet aggregation, causing Shc and myosin to interact with the beta-integrin cytoplasmic domain. Platelets from mice lacking beta 3 ICY motif tyrosines formed defective aggregates and poorly retracted clots, establishing integrin tyrosine phosphorylation as a key mediator of beta 3-integrin signals.  相似文献   

9.
Echistatin, a 5000-Da disintegrin, is a strong competitive inhibitor of platelet alpha(IIb)beta(3) binding to fibrinogen. In addition to its antiplatelet activity, echistatin also exhibits activating properties by inducing a switch of alpha(IIb)beta(3) conformation towards an active state. However, soluble echistatin, which is a monomeric ligand, provides only receptor affinity modulation, but it is unable to activate integrin-dependent intracellular signals. Since proteins may exhibit a multivalent functionality as a result of their absorption to a substrate, in this study we evaluated whether immobilised echistatin is able to stimulate platelet adhesion and signalling. The immobilisation process led to an increase of echistatin affinity for integrin(s) expressed on resting platelets. Unlike the soluble form, immobilised echistatin bound at comparable extent either unstimulated or ADP-activated platelets. Furthermore, echistatin presented in this manner was effective in stimulating integrin-dependent protein tyrosine phosphorylation. Platelets adhering to immobilised echistatin showed a pattern of total tyrosine phosphorylated proteins resembling that of fibrinogen-attached platelets. In particular, solid-phase echistatin induced a strong phosphorylation of tyrosine kinases pp72(syk) and pp125(FAK). Inhibitors of platelet signalling, such as apyrase, prostaglandin E(1), cytochalasin D and bisindolylmaleimide, while not affecting platelet adhesion to immobilised echistatin, abolished pp125(FAK) phosphorylation. This suggests that signals activating protein kinase C function, dense granule secretion and cytoskeleton assembly might be involved in echistatin-induced pp125(FAK) phosphorylation.  相似文献   

10.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The function of insulin receptor substrate-1 (IRS-1), a key molecule of insulin signaling, is modulated by phosphorylation at multiple serine/threonine residues. Phorbol ester stimulation of cells induces phosphorylation of two inhibitory serine residues in IRS-1, i.e. Ser-307 and Ser-318, suggesting that both sites may be targets of protein kinase C (PKC) isoforms. However, in an in vitro system using a broad spectrum of PKC isoforms (alpha, beta1, beta2, delta, epsilon, eta, mu), we detected only Ser-318, but not Ser-307 phosphorylation, suggesting that phorbol ester-induced phosphorylation of this site in intact cells requires additional signaling elements and serine kinases that link PKC activation to Ser-307 phosphorylation. As we have observed recently that the tyrosine phosphatase Shp2, a negative regulator of insulin signaling, is a substrate of PKC, we studied the role of Shp2 in this context. We found that phorbol ester-induced Ser-307 phosphorylation is reduced markedly in Shp2-deficient mouse embryonic fibroblasts (Shp2-/-) whereas Ser-318 phosphorylation is unaltered. The Ser-307 phosphorylation was rescued by transfection of mouse embryonic fibroblasts with wild-type Shp2 or with a phosphatase-inactive Shp2 mutant, respectively. In this cell model, tumor necrosis factor-alpha-induced Ser-307 phosphorylation as well depended on the presence of Shp2. Furthermore, Shp2-dependent phorbol ester effects on Ser-307 were blocked by wortmannin, rapamycin, and the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. This suggests an involvement of the phosphatidylinositol 3-kinase/mammalian target of rapamycin cascade and of JNK in this signaling pathway resulting in IRS-1 Ser-307 phosphorylation. Because the activation of these kinases does not depend on Shp2, it is concluded that the function of Shp2 is to direct these activated kinases to IRS-1.  相似文献   

12.
13.
Agrin, a protein that mediates nerve-induced acetylcholine receptor (AChR) aggregation at developing neuromuscular junctions, has been shown to cause an increase in phosphorylation of the beta, gamma, and delta subunits of AChRs in cultured myotubes. As a step toward understanding the mechanism of agrin-induced AChR aggregation, we examined the effects of inhibitors of protein kinases on AChR aggregation and phosphorylation in chick myotubes in culture. Staurosporine, an antagonist of both protein serine and tyrosine kinases, blocked agrin-induced AChR aggregation in a dose-dependent manner; 50% inhibition occurred at approximately 2 nM. The extent of inhibition was independent of agrin concentration, suggesting an effect downstream of the interaction of agrin with its receptor. Staurosporine blocked agrin-induced phosphorylation of the AChR beta subunit, which occurs at least in part on tyrosine residues, but did not reduce phosphorylation of the gamma and delta subunits, which occurs on serine/threonine residues. Staurosporine also prevented the agrin- induced decrease in the rate at which AChRs are extracted from intact myotubes by mild detergents. H-7, an antagonist of protein serine kinases, inhibited agrin-induced phosphorylation of the gamma and delta subunits but did not block agrin-induced phosphorylation of the AChR beta subunit, AChR aggregation, or the decrease in AChR extractability. The results provide support for the hypothesis that tyrosine phosphorylation of the beta subunit plays a role in agrin-induced AChR aggregation.  相似文献   

14.
GABA(A) receptors are critical mediators of fast synaptic inhibition in the brain, and the predominant receptor subtype in the central nervous system is believed to be a pentamer composed of alpha, beta, and gamma subunits. Previous studies on recombinant receptors have shown that protein kinase C (PKC) and PKA directly phosphorylate intracellular serine residues within the receptor beta subunit and modulate receptor function. However, the relevance of this regulation for neuronal receptors remains poorly characterized. To address this critical issue, we have studied phosphorylation and functional modulation of GABA(A) receptors in cultured cortical neurons. Here we show that the neuronal beta3 subunit is basally phosphorylated on serine residues by a PKC-dependent pathway. PKC inhibitors abolish basal phosphorylation, increasing receptor activity, whereas activators of PKC enhance beta3 phosphorylation with a concomitant decrease in receptor activity. PKA activators were shown to increase the phosphorylation of the beta3 subunit only in the presence of PKC inhibitors. We also show that the main sites of phosphorylation within the neuronal beta3 subunit are likely to include Ser-408 and Ser-409, residues that are important for the functional modulation of beta3-containing recombinant receptors. Furthermore, PKC activation did not change the total number of GABA(A) receptors in the plasma membrane, suggesting that the effects of PKC activation are on the gating or conductance of the channel. Together, these results illustrate that cell-signaling pathways that activate PKC may have profound effects on the efficacy of synaptic inhibition by directly modulating GABA(A) receptor function.  相似文献   

15.
The stimulation of activated human T lymphocytes with IL-2 results in increased tyrosine kinase activity. IL-2 treatment of Tac+ T cells stimulates the rapid phosphorylation of multiple protein substrates at M of 116, 100, 92, 70 to 75, 60, 56, 55, 33, and 32 kDa. Phosphorylation on tyrosine residues was detected by immunoaffinity purification of protein substrates with Sepharose linked antiphosphotyrosine mAb, 1G2. Although phorbol ester stimulated serine phosphorylation of the IL-2R alpha (p55) subunit recognized by alpha TAC mAb, IL-2 did not stimulate any detectable phosphorylation of IL-2R alpha or associated coimmune precipitated proteins. In fact, the tyrosine phosphorylated proteins did not coprecipitate with alpha Tac antibody and similar phosphoproteins were stimulated by IL-2 in IL-2R alpha- human large granular lymphocytes which express only the 70 to 75 kDa IL-2R beta subunit of the high affinity IL-2R. Anti-Tac mAb could inhibit IL-2-stimulated tyrosine phosphorylation in activated T cells, which express both IL-2R subunits that together form the high affinity receptor complex, but not in large granular lymphocytes expressing only the IL-2R beta subunit. The data suggest that IL-2 stimulation of tyrosine kinase activities requires only the IL-2R beta subunit.  相似文献   

16.
We have recently shown that the platelet integrin alpha(IIb)beta(3) is activated by von Willebrand factor (vWF) binding to its platelet receptor, glycoprotein Ib-IX (GPIb-IX), via the protein kinase G (PKG) signaling pathway. Here we show that GPIb-IX-mediated activation of integrin alpha(IIb)beta(3) is inhibited by dominant negative mutants of Raf-1 and MEK1 in a reconstituted integrin activation model in Chinese hamster ovary (CHO) cells and that the integrin-dependent platelet aggregation induced by either vWF or low dose thrombin is inhibited by MEK inhibitors PD98059 and U0126. Thus, mitogen-activated protein kinase (MAPK) pathway is important in GPIb-IX-dependent activation of platelet integrin alpha(IIb)beta(3). Furthermore, vWF binding to GPIb-IX induces phosphorylation of Thr-202/Tyr-204 of extracellular signal-regulated kinase 2 (ERK2). GPIb-IX-induced ERK2 phosphorylation is inhibited by PKG inhibitors and enhanced by overexpression of recombinant PKG. PKG activators also induce ERK phosphorylation, indicating that activation of MAPK pathway is downstream from PKG. Thus, our data delineate a novel integrin activation pathway in which ligand binding to GPIb-IX activates PKG that stimulates MAPK pathway, leading to integrin activation.  相似文献   

17.
Occupancy of integrin receptors induces conformational changes in the receptor, resulting in exposure of novel interactive sites termed ligand-induced binding sites (LIBS). We report here that Fab fragments of certain antibodies against LIBS on integrin alpha IIb beta 3 (platelet glycoprotein IIb-IIIa) block platelet aggregation. Thus, certain LIBS or the regions surrounding them may participate in events required for platelet aggregation. In addition, certain anti-alpha IIb beta 3 LIBS Fab fragments stimulated platelet aggregation. This was due to induction of fg binding to alpha IIb beta 3, apparently by shifting a conformational equilibrium between a "resting" and an "activated" state of alpha IIb beta 3. Some of the activating anti-LIBS Fab fragments also induced high affinity fibronectin binding to alpha IIb beta 3, whereas others did not. Thus, changes in the conformation of this integrin modulate both the specificity and affinity of ligand recognition.  相似文献   

18.
Activation of protein kinase C (PKC) results in down-modulation of the gamma-aminobutyric acid type A (GABAA) receptor. In this study, the recombinant subunit combination alpha 1 beta 2 gamma 2S was expressed in Xenopus oocytes. The resulting channel was shown to be modulated by 2 microM oleoylacetylglycerol or, stereo-specifically, by low concentrations (10 nM) of the phorbol ester 4 beta-phorbol 12-myristate 13-acetate. By site-specific mutagenesis, we altered the serine or threonine residues of consensus phosphorylation sites for PKC in the large, intracellular domain of alpha 1, beta 2, and gamma 2S. Mutant subunits were co-expressed with wild type subunits to yield alpha 1 beta 2 gamma 2S combinations. All of the tested 14 mutations did not affect the level of expression of GABA current. Two of these mutations, Ser-410 in beta 2 and Ser-327 in gamma 2S, resulted in a significant reduction of the effect of the activator of PKC, 4 beta-phorbol 12-myristate 13-acetate, on the GABA current amplitude. Thus, we have identified two single serine residues, Ser-410 in the subunit beta 2 and Ser-327 in gamma 2S, as phosphorylation sites of a PKC endogenous to Xenopus oocytes. Co-expression of the mutant subunits suggests that phosphorylation of both sites is required for a full, PKC-mediated down-regulation of GABA currents.  相似文献   

19.
The disorders of hemostasis and coagulation were believed to be the main contributors to the pathogenesis of pulmonary thromboembolism (PTE), and platelets are the basic factors regulating hemostasis and coagulation and play important roles in the process of thrombosis. This study investigated the proteome of human umbilical vein endothelial cells (HUVECs) with platelet endothelial aggregation receptor-1 (PEAR1) knockdown using the isobaric tags for relative and absolute quantitation (iTRAQ) method and analyzed the role of differential abundance proteins (DAPs) in the regulation of platelets aggregation. Our results showed that the conditioned media-culturing HUVECs with PEAR1 knockdown partially suppressed the adenosine diphosphate (ADP)-induced platelet aggregation. The proteomics analysis was performed by using the iTRAQ technique, and a total of 215 DAPs (124 protein was upregulated and 91 protein were downregulated) were identified. The Gene Ontology (GO) enrichment analysis showed that proteins related to platelet α granule, adenosine triphosphate metabolic process, and endocytosis were significantly enriched. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also identified the significant enrichment of endocytosis-related pathways. The real-time polymerase chain reaction assay confirmed that the expression of P2Y12, mitochondrial carrier 2, NADH dehydrogenase (ubiquinone) iron-sulfur protein 3, and ubiquinol-cytochrome c reductase hinge protein are significantly downregulated in the HUVECs with PEAR1 knockdown. In conclusion, our in vitro results implicated that DAPs induced by PEAR1 knockdown might contribute to the platelet aggregation. Proteomic studies by employing GO enrichment and KEGG pathway analysis suggested that the potential effects of DAPs on platelet aggregation may be linked to the balance of ADP synthesis or degradation in mitochondria.  相似文献   

20.
We have previously shown that interferon-alpha (IFN alpha)-dependent tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) is impaired by serine phosphorylation of IRS-1 due to the reduced ability of serine phosphorylated IRS-1 to serve as a substrate for Janus kinase 1 (JAK1). Here we report that FKBP12-rapamycin-associated protein (FRAP) is a physiologic IRS-1 kinase that blocks IFN alpha signaling by serine phosphorylating IRS-1. We found that both FRAP and insulin-activated p70 S6 kinase (p70(s6k)) serine phosphorylated IRS-1 between residues 511 and 772 (IRS-1(511-772)). Importantly, only FRAP-dependent IRS-1(511-772) serine phosphorylation inhibited by 50% subsequent JAK1-dependent tyrosine phosphorylation of IRS-1. Furthermore, treatment of U266 cells with the FRAP inhibitor rapamycin increased IFN alpha-dependent tyrosine phosphorylation by twofold while reducing constitutive IRS-1 serine phosphorylation within S/T-P motifs by 80%. Taken together, these data indicate that FRAP, but not p70(s6k), is a likely physiologic IRS-1 serine kinase that negatively regulates JAK1-dependent IRS-1 tyrosine phosphorylation and suggests that FRAP may modulate IRS-dependent cytokine signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号