首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cells producing avian sarcoma virus (ASV) contain at least three virus-specific mRNAs, two of which are encoded within the 3' half of the viral genome. Each of these viral RNAs can hybridize with single-stranded DNA(cDNA5') that is complementary to a sequence of 101 nucleotides found at the 5' terminus of the ASV genome, but not within the 3' half of the genome. We proposed previously (Weiss, Varmus and Bishop, 1977) that this nucleotide sequence may be transposed to the 5' termini of viral mRNAs during the genesis of these RNAs. We now substantiate this proposal by reporting the isolation and chemical characterization of the nucleotide sequences complementary to cDNA5' in the genome and mRNAs of the Prague B strain of ASV. We isolated the three identified classes of ASVmRNA (38, 28 and 21S) by molecular hybridization; each class of RNA contained a "capped" oligonucleotide identical to that found at the 5' terminus of the ASV genome. When hybridized with cDNA5', each class of RNA gave rise to RNAase-resistant duplex hybrids that probably encompassed the full extent of cDNA5'. The molar yields of duplex conformed approximately to the number of virus-specific RNA molecules in the initial samples; hence most if not all of the molecules of virus-specific RNA could give rise to the duplexes. The duplexes prepared from the various RNAs all contained the capped oligonucleotide found at the 5' terminus of the viral genome and had identical "fingerprints" when analyzed by two-dimensional fractionation following hydrolysis with RNAase T1. In contrast, RNA representing the 3' half of the ASV genome did not form hybrids with cDNA5'. We conclude that a sequence of more than 100 nucleotides is transposed from the 5' end of the ASV genome to the 5' termini of smaller viral RNAs during the genesis of these RNAs. Transposition of nucleotide sequences during the production of mRNA has now been described for three families of animal viruses and may be a common feature of mRNA biogenesis in eucaryotic cells. The mechanism of transposition, however, and the function of the transposed sequences are not known.  相似文献   

2.
3.
The spliceosomal small nuclear RNAs U1, U2, U4, and U5 are transcribed by RNA polymerase II as precursors with extensions at their 3' ends. The 3' processing of these pre-snRNAs is not understood in detail. Two pathways of pre-U2 RNA 3' processing in vitro were revealed in the present investigation by using a series of human wild-type and mutant pre-U2 RNAs. Substrates with wild-type 3' ends were initially shortened by three or four nucleotides (which is the first step in vivo), and the correct mature 3' end was then rapidly generated. In contrast, certain mutant pre-U2 RNAs displayed an aberrant 3' processing pathway typified by the persistence of intermediates representing cleavage at each internucleoside bond in the precursor 3' extension. Comparison of the wild-type and mutant pre-U2 RNAs revealed a potential base-pairing interaction between nucleotides in the precursor 3' extension and a sequence located between the Sm domain and stem-loop III of U2 RNA. Substrate processing competition experiments using a highly purified pre-U2 RNA 3' processing activity suggested that only RNAs capable of this base-pairing interaction had high affinity for the pre-U2 RNA 3' processing enzyme. The importance of this postulated base-pairing interaction between the precursor 3' extension and the internal region between the Sm domain and stem-loop III was confirmed by the results obtained with a compensatory substitution that restores the base pairing, which displayed the normal 3' processing reaction. These results implicate a precursor-specific base-paired structure involving sequences on both sides of the mature cleavage site in the 3' processing of human U2 RNA.  相似文献   

4.
We have investigated the intracellular location of RNAs transcribed from transfected DNA. COS cells transfected with a clone containing the human adult beta globin gene contain three classes of globin RNAs. Their 3' termini and splice sites are indistinguishable from those of mature reticulocyte beta globin mRNA, and they are polyadenylated. However, as determined by S1 mapping, their 5' sequences are different. The 5' terminus of one is the same as that of mature beta globin mRNA (+1, cap site). The presumed 5' terminus of the second is located 30 nucleotides downstream from the cap site (+30). The third class contains additional nucleotides transcribed from sequences located 5' to the cap site (5' upstream RNA). The 5' upstream RNA molecules are restricted to the nucleus and are more stable than heterogeneous nuclear RNA. The +30 and +1 RNAs are located primarily in the cytoplasm. The data support the notion that nucleotide sequences and/or secondary modifications in the 5' region determine if an RNA is to be transported.  相似文献   

5.
6.
7.
8.
9.
PIWI-interacting RNAs (piRNAs) are 23-30 nucleotides small RNAs that act with PIWI proteins to silence transposon activity in animal gonads. In contrast to microRNAs and small interfering RNAs, the biogenesis of piRNAs, including how 3' ends are formed, remains largely unknown. Here, by using lysate from BmN4, a silkworm ovary-derived cell line, we have developed a cell-free system that recapitulates key steps of piRNA biogenesis: loading of long single-stranded precursor RNAs into PIWI proteins with 5'-nucleotide bias, followed by Mg(2+)-dependent 3' to 5' exonucleolytic trimming and 2'-O-methylation at 3' ends. Importantly, 3' end methylation is tightly coupled with trimming and yet is not a prerequisite for determining the mature piRNA length. Our system provides a biochemical framework for dissecting piRNA biogenesis.  相似文献   

10.
RNA SHAPE chemistry yields quantitative, single-nucleotide resolution structural information based on the reaction of the 2'-hydroxyl group of conformationally flexible nucleotides with electrophilic SHAPE reagents. However, SHAPE technology has been limited by the requirement that sites of RNA modification be detected by primer extension. Primer extension results in loss of information at both the 5' and 3' ends of an RNA and requires multiple experimental steps. Here we describe RNase-detected SHAPE that uses a processive, 3'→5' exoribonuclease, RNase R, to detect covalent adducts in 5'-end-labeled RNA in a one-tube experiment. RNase R degrades RNA but stops quantitatively three and four nucleotides 3' of a nucleotide containing a covalent adduct at the ribose 2'-hydroxyl or the pairing face of a nucleobase, respectively. We illustrate this technology by characterizing ligand-induced folding for the aptamer domain of the Escherichia coli thiamine pyrophosphate riboswitch RNA. RNase-detected SHAPE is a facile, two-day approach that can be used to analyze diverse covalent adducts in any RNA molecule, including short RNAs not amenable to analysis by primer extension and RNAs with functionally important structures at their 5' or 3' ends.  相似文献   

11.
12.
Many orthopoxvirus messenger RNAs have an unusual nontemplated poly(A) tract of 5 to 40 residues at the 5' end. The precise function of this feature is unknown. Here we show that 5' poly(A) tracts are able to repress RNA decay by inhibiting 3'-to-5' exonucleases as well as decapping of RNA substrates. UV cross-linking analysis demonstrated that the Lsm complex associates with the 5' poly(A) tract. Furthermore, recombinant Lsm1-7 complex specifically binds 5' poly(A) tracts 10 to 21 nucleotides in length, consistent with the length of 5' poly(A) required for stabilization. Knockdown of Lsm1 abrogates RNA stabilization by the 5' poly(A) tract. We propose that the Lsm complex simultaneously binds the 3' and 5' ends of these unusual messenger RNAs and thereby prevents 3'-to-5' decay. The implications of this phenomenon for cellular mRNA decay are discussed.  相似文献   

13.
14.
Recombination between satellite RNAs of turnip crinkle virus.   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

15.
16.
Simon AE  Howell SH 《The EMBO journal》1986,5(13):3423-3428
RNA C (355 bases), RNA D (194 bases) and RNA F (230 bases) are small, linear satellite RNAs of turnip crinkle virus (TCV) which have been cloned as cDNAs and sequenced in this study. These RNAs produce dramatically different disease symptoms in infected plants. RNA C is a virulent satellite that intensifies virus symptoms when co-inoculated with its helper virus in turnip plants, while RNA D and RNA F are avirulent. RNA D and RNA F, the avirulent satellites, are closely related to each other except that RNA F has a 36-base insert near its 3' end, not found in RNA D. The 189 bases at the 5' end of RNA C, the virulent satellite, are homologous to the entire sequence of RNA D. However, the 3' half of RNA C, is composed of 166 bases which are nearly identical to two regions at the 3' end of the TCV helper virus genome. Hence, the virulent satellite is a composite molecule with one domain at its 5' end homologous to the other avirulent satellites and another domain at its 3' end homologous to the helper virus genome. All four TCV RNAs, RNAs C, D and F and the helper virus genome have identical 7 bases at their 3' ends. The secondary structure of RNA C deduced from the sequence can be folded into two separate domains — the domain of helper virus genome homology and the domain homologous to other TCV satellite RNAs. Comparative sequences of several different RNA C clones reveal that this satellite is a population of molecules with sequence and length heterogeneity.  相似文献   

17.
18.
本文利用同位素代谢标记在HEV感染85~10.5,6.5~7.5h分别检测到1及2个亚基因组RNA,而感染21h后及在成熟的病毒颗粒内未能检测到亚基因组RNA。通过杂交实验,发现HEV的亚基因组RNA具有典型的共3′端的半套式结构,且基因组RNA与亚基因组RNA的5′端不存在共同的引导序列。通过紫外转录图谱发现HEV的亚基因组RNA是通过独立转录的方式产生的。利用引物延伸反应发现两种亚基因组RNA的转录起始位点分别位于RNA聚合酶区及非结构区、结构区的基因间序列。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号