共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultures of dissociated brain cells from 15-day-old fetal mice were grown in the presence and absence of 20 or 50 nM triiodothyronine (T3), 30 or 300 nM cortisol, and 30 nM cortisol plus 50 nM T3 added to chemically defined media or in media supplemented with 15% serum from control and hypothyroid calves. The specific activities of five lysosomal enzymes--N-acetyl galactosaminidase, beta-glucuronidase, beta-galactosidase, cathepsin B, and dipeptidyl aminopeptidase I (DAP-I)--were higher in cells grown in calf serum than in cells grown in defined media. Of these enzymes, only DAP-I was elevated in activity when the cells were grown in hypothyroid calf serum instead of control calf serum. Elevation of DAP-I activity was reversed by addition of 20 nM T3 to hypothyroid calf serum. The enzymatic properties of DAP-I were similar whether the cells were grown in control or hypothyroid calf serum and were similar to those reported for human fibroblasts and the purified enzyme. When the cells were grown in defined media, cortisol decreased the activities of all lysosomal enzymes, with 300 nM cortisol being more effective than 30 nM cortisol. Addition of 50 nM T3 to 30 nM cortisol decreased DAP-I activity more than 30 nM cortisol alone, but 50 nM T3 alone in defined media did not alter DAP-I levels. The reduction of DAP-I activity in these cells by T3 required cortisol, unidentified components in serum, or both.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
The effect of protein-modifying reagents on the activity of a purified preparation of a thyroliberin-hydrolysing pyroglutamate aminopeptidase, solubilised from synaptosomal membranes of guinea-pig brain by treatment with papain, was investigated. The results indicated that tyrosine, histidine, arginine, and possibly lysine residues were necessary for expression of catalytic activity and that these tyrosine, histidine, and arginine residues were probably located at the active site of the enzyme. Cysteine, serine, glutamate, and aspartate residues were not involved in the expression of catalytic activity. 相似文献
3.
The binding of the unselective opioid antagonist [3H]diprenorphine to homogenates prepared from rat brain and from guinea-pig brain and cerebellum has been studied in HEPES buffer containing 10 mM Mg2+ ions. Sequential displacement of bound [3H]diprenorphine by ligands with selectivity for mu-, delta-, and kappa-opioid receptors uncovers the multiple components of binding. In the presence of cold ligands that occupy all mu-, delta-, and kappa-sites, opioid binding still remains. This binding represents 20% of total specific sites and is displaced by naloxone. The nature of these undefined opioid binding sites is discussed. 相似文献
4.
Despite having no effect on basal phosphoinositide hydrolysis. N-methyl-D-aspartate (NMDA) inhibited carbachol-stimulated accumulation of 3H-inositol phosphates and enhanced that due to noradrenaline in guinea-pig cerebral cortex slices. The glycine antagonist 7-chlorokynurenic acid inhibited the effects of NMDA and this inhibition was reversed by glycine. The action of 7-chlorokynurenic acid was not mimicked by strychnine or HA 966 (1-hydroxy-3-aminopyrrolid-2-one). L-Glutamate also inhibited carbachol-stimulated accumulation of 3H-inositol phosphates, but this inhibition was not blocked by 7-chlorokynurenic acid. The data are consistent with glycine maintaining tonic control over NMDA receptor activity in guinea-pig brain. 相似文献
5.
Purification of Two Dipeptidyl Aminopeptidases II from Rat Brain and Their Action on Proline-Containing Neuropeptides 总被引:2,自引:1,他引:2
From the soluble and membrane fractions of rat brain homogenate, two enzymes that liberate dipeptides of the type Xaa-Pro from chromogenic substrates were purified to homogeneity. The two isolated dipeptidyl peptidases had similar molecular and catalytic properties: For the native proteins, molecular weights of 110,000 were estimated; for the denatured proteins, the estimate was 52,500. Whereas the soluble peptidase yielded one band of pI 4.2 after analytical isoelectric focusing, two additional enzymatic active bands were detected between pI 4.2 and 4.3 for the membrane-associated form. As judged from identical patterns after neuraminidase treatment, both peptidases contained no sialic acid. A pH optimum of 5.5 was estimated for the hydrolysis of Gly-Pro- and Arg-Pro-nitroanilide. Substrates with alanine instead of proline in the penultimate position were hydrolyzed at comparable rates. Acidic amino acids in the ultimate N-terminal position of the substrates reduced the activities of the peptidases 100-fold as compared with corresponding substrates with unblocked neutral or, especially, basic termini. The action of the dipeptidyl peptidase on several peptides with N-terminal Xaa-Pro sequences was investigated. Tripeptides were rapidly hydrolyzed, but the activities considerably decreased with increasing chain length of the peptides. Although the tetrapeptide substance P 1-4 was still a good substrate, the activities detected for the sequential liberation of Xaa-Pro dipeptides from substance P itself or casomorphin were considerably lower. Longer peptides were not cleaved. The peptidases hydrolyzed Pro-Pro bonds, e.g., in bradykinin 1-3 or 1-5 fragments, but bradykinin itself was resistant. The enzymes were inhibited by serine protease inhibitors, like diisopropyl fluorophosphate or phenylmethylsulfonyl fluoride, and by high salt concentrations but not by the aminopeptidase inhibitors bacitracin and bestatin. Based on the molecular and catalytic properties, both enzymes can be classified as species of dipeptidyl peptidase II (EC 3.4.14.2) rather than IV (EC 3.4.14.5). However, some catalytic properties differentiate the brain enzyme from forms of dipeptidyl peptidase II of other sources. 相似文献
6.
Karen E. Neil Félix Hernández David A. Kendall Stephen P. H. Alexander 《Journal of neurochemistry》1997,68(6):2610-2617
Abstract: In this report, we have examined the radioligand binding and second messenger signalling characteristics of β-adrenoceptors in the guinea-pig brain. [125 I]lodocyanopindolol ([125 I]ICYP)-labelled sites in the cerebellum and cerebral cortex were of similar densities ( B max 34 and 24 fmol·mg−1 ) and affinities ( K D 20 and 55 p M ), respectively. Analysis of competition for [125 I]ICYP binding in the cerebellum was compatible with the presence of a β2 -adrenoceptor. In this tissue, isoprenaline evoked a cyclic AMP stimulation, and also potentiated cyclic GMP accumulations evoked in the presence of a nitric oxide donor, consistent with mediation via a β2 -adrenoceptor. The [125 I]ICYP binding profile in the cerebral cortex did not comply with those previously described for β-adrenoceptor subtypes, and isoprenaline failed to alter significantly cyclic AMP accumulation in the cerebral cortex, hippocampus, or neostriatum, even in the presence of forskolin or a phosphodiesterase inhibitor. Isoprenaline was also without effect on cyclic GMP accumulation or phosphoinositide turnover in the cerebral cortex. These results suggest that the guinea-pig cerebellum expresses a functional β2 -adrenoceptor coupled to cyclic AMP generation, and potentiation of cyclic GMP accumulation. However, the guinea-pig cerebral cortex displays binding sites that exhibit β-adrenoceptor-like pharmacology but fail to show functional coupling to cyclic AMP, cyclic GMP, or phosphoinositide signalling systems. 相似文献
7.
Agić D Hranjec M Jajcanin N Starcević K Karminski-Zamola G Abramić M 《Bioorganic chemistry》2007,35(2):153-169
Dipeptidyl peptidase III (DPP III), also known as enkephalinase B, is a zinc-hydrolase with an indicated role in the mammalian pain modulatory system. In order to find a potent antagonist of this enzyme, we synthesized and screened the effect of a small set of benzimidazole derivatives on its activity. To improve the inhibitory potential, a cyclobutane ring was introduced as rigid conformation support to the diamidino substituted dibenzimidazoles. Two such compounds (1' and 4') from the group of cyclobutane derivatives containing amidino-substituted benzimidazole moieties, obtained by photochemical cyclization in water and by respecting rules of the green chemistry approach, were found to be strong DPP III inhibitors, with IC(50) value below 5 microM. Compound 1' displayed time-dependent inhibition towards human DPP III, characterized by the second-order rate constant of 6924+/-549 M(-1)min(-1) (K(i)=0.20 microM). The peptide substrate valorphin protected the enzyme from inactivation by 1'. 相似文献
8.
The zinc-dependent leucine aminopeptidase from Pseudomonas putida (ppLAP) is an important enzyme for the industrial production of enantiomerically pure amino acids. To provide a better understanding of its structure-function relationships, the enzyme was studied by X-ray crystallography. Crystal structures of native ppLAP at pH 9.5 and pH 5.2, and in complex with the inhibitor bestatin, show that the overall folding and hexameric organization of ppLAP are very similar to those of the closely related di-zinc leucine aminopeptidases (LAPs) from bovine lens and Escherichia coli. At pH 9.5, the active site contains two metal ions, one identified as Mn2+ or Zn2+ (site 1), and the other as Zn2+ (site 2). By using a metal-dependent activity assay it was shown that site 1 in heterologously expressed ppLAP is occupied mainly by Mn2+. Moreover, it was shown that Mn2+ has a significant activation effect when bound to site 1 of ppLAP. At pH 5.2, the active site of ppLAP is highly disordered and the two metal ions are absent, most probably due to full protonation of one of the metal-interacting residues, Lys267, explaining why ppLAP is inactive at low pH. A structural comparison of the ppLAP-bestatin complex with inhibitor-bound complexes of bovine lens LAP, along with substrate modelling, gave clear and new insights into its substrate specificity and high level of enantioselectivity. 相似文献
9.
To examine whether multiple subtypes of the excitatory amino acid (EAA) receptor coupled to phosphoinositide (PPI) hydrolysis exist, we have pharmacologically characterized the PPI response in neonatal and adult rat brain. Activation of PPI hydrolysis was determined by the accumulation of [3H]inositol monophosphate in brain slices prelabeled with [3H]inositol. In neonatal hippocampus, D,L-2-amino-3-phosphonopropionic acid (AP3; 1 mM) inhibited the cis-1-aminocyclopentane-1,3-dicarboxylic acid (IUPAC nomenclature; ACPD; 100 microM)- and quisqualate (Quis; 100 microM)-stimulated PPI hydrolysis by 73 and 66%, respectively, but had no effect in neonatal cerebellum. In adult hippocampus, AP3 stimulated PPI hydrolysis with potency and efficacy comparable to those of Quis and ACPD and completely masked the Quis concentration-response curve. In adult cerebellum, only Quis behaved as a full agonist on the PPI response. The Quis concentration-response curve was shifted rightward with a fourfold decrease in potency in the presence of ACPD (5 mM), whereas it was nearly additive with the PPI response induced by AP3 (5 mM). Thus, our data reveal significant developmental and brain regional differences in metabotropic EAA receptor responses and support the notion that this receptor is heterogeneous, in both a regionally specific and a developmentally dependent manner. 相似文献
10.
Raymond H. Abhold Jodie M. Hanesworth Joseph W. Harding 《Journal of neurochemistry》1988,50(3):831-838
The binding of 125I-angiotensin III (125I-ANG III) to rat brain membranes was examined and compared with that of 125I-angiotensin II (125I-ANG II). Degradation of each ligand, as monitored by HPLC, was effectively inhibited using fragments of ANG III and ANG II known to have little affinity for angiotensin binding sites. Three classes of 125I-ANG III-binding sites were observed based on affinity (KD = 0.13, 1.83, and 10.16 nM) and capacity (Bmax = 1.30, 18.41, and 67.2 fmol/mg protein, respectively). Two classes of 125I-ANG II-binding sites of high affinity (KD = 0.11 and 1.76 nM) and low capacity (Bmax = 1.03 and 18.86 fmol/mg protein, respectively) were also identified. Cross-displacement studies confirmed that the two highest-affinity 125I-ANG III-binding sites and the 125I-ANG II-binding sites were the same. On the other hand, the binding of 125I-ANG III to the low-affinity 125I-ANG III-binding site could not be inhibited with ANG II. These data imply that previously measured differences in the biological potency of cerebroventricularly applied ANG III and ANG II probably do not result from differential binding of these peptides to central angiotensin receptors. 相似文献
11.
Romero FJ Romá J Bosch-Morell F Romero B Segura-Aguilar J Llombart-Bosch A Ernster L 《Neurochemical research》2000,25(3):389-393
Treatment with the antioxidant butylated hydroxyanisole (BHA) or the azo dye Sudan III during two weeks led to changes in the brain enzymatic antioxidant defense of Syrian golden hamsters. BHA was able to induce liver superoxide dismutase (SOD) 2-fold but had no effect on the brain SOD activity, whereas SOD activity was reduced to 50% in brain and remained unchanged in liver with Sudan III. These two substances are known inducers of DT-diaphorase and in fact this enzymatic activity was induced 4- and 6-fold in liver with BHA and Sudan III, respectively. However, BHA promoted a significant 40% reduction, whereas no change was observed with Sudan III in brain DT-diaphorase activity. Glutathione(GSH)-related enzymatic activities were also assayed in brain and liver. No induction was observed with BHA or Sudan III for any of the activities tested in hamster brain: GSH S-transferase (GST), GSH peroxidase (GSH-Px) and glutathione disulfide (GSSG) reductase (GR). Only 1.3- and 1. 4-fold increases of GST and GR activities were observed in liver and no change in any of these enzymatic activities in brain with BHA; a partial limitation of permeability to BHA of the blood-brain barrier may explain this results. Furthermore, Sudan III promoted reductions in all these GSH-related enzymatic activities in brain and liver. The possible explanations for these results are discussed.Deceased 4th November 1998 相似文献
12.
Tran TV Ellis KA Kam CM Hudig D Powers JC 《Archives of biochemistry and biophysics》2002,403(2):160-170
The broadly reactive cysteine protease dipeptidyl peptidase I (DPPI, cathepsin C) is thought to activate all progranzymes (zymogens of lymphocyte serine proteases) to form mature granzymes. We synthesized dipeptide 7-amino-4-methylcoumarin (AMC) substrates containing progranzyme activation sequences and showed that they were efficiently hydrolyzed by DPPI. However, DPPI will not hydrolyze Ile-Ile-AMC, the N-terminal dipeptide sequence found in mature granzymes. Introduction of the nonphysiological homophenylalanine (Hph) residue at P1 resulted in the best substrate Ala-Hph-AMC for DPPI (k(cat)/K(m)=9,000,000M(-1)s(-1)). The charged N-terminal amino group of the substrate was essential and replacement of the NH(2) group with OH or NH(CH(3)) in Gly-Phe-AMC reduced the k(cat)/K(m) value by two to three orders of magnitude. A hydrazide azaglycine analog, NH(2)NHCO-Phe-AMC, was not hydrolyzed at pH 5.5, but underwent slow hydrolysis at lower pHs where the amino group is partially protonated. DPPI also failed to hydrolyze NH(2)COCH(2)-Phe-AMC, where the NH(2) group is unprotonated. The results reported in this paper should be useful in the design of better DPPI inhibitors to block granzyme maturation and granzyme-dependent apoptosis. 相似文献
13.
The objective of this immunohistochemical research was to reveal the distribution of a proline-rich peptide-1 (PRP-1) in various brain structures of intact and trauma-injured rats and to identify the mechanisms of promotion of neuronal recovery processes following PRP-1 treatment. PRP-1, produced by bovine hypothalamic magnocellular cells and consisting of 15 amino acid residues, is a fragment of neurophysin vasopressin associated glycoprotein isolated from bovine neurohypophysis neurosecretory granules. PRP-1-immunoreactivity (PRP-1-IR) was detected in the brain of intact rats in the neurons of paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus, in almost all cell groups in the medulla oblongata, in Purkinje and some cerebellar nuclei cells, and in nerve fibers. At 3 weeks after hemisection of the spinal cord (SC) an asymmetry of PRP-1 localization in the PVN and SON was observed: no PRP-1-IR was exhibited at the affected sides of both nuclei. Daily intramuscular administration of PRP-1 for 3 weeks significantly increased the number of PRP-1-immunoreactive (PRP-1-Ir) varicose nerve fibers, and cells in PVN and SON and in cell groups of the limbic system and brain stem. Tanycytes in the median eminence and covering ependyma also demonstrated strong PRP-1-IR. PRP-1 treatment also activated neuropeptide Y-IR (NPY-IR) in nerve fibers and immunophilin fragment-IR (IphF-IR) in lymphocytes and nerve cells. A strong increase of PRP-1-IR was observed in the PVN and SON of SC-injured rats following the treatment with another PRP (PRP-3). Preliminary physiological data demonstrate that PRP-3 is more "aggressive" in the recovery processes than PRP-1. Based on the findings regarding PRP action on neurons survival, axons regeneration, and the number of IphF-Ir lymphocytes and NPY-Ir nerve fibers, PRP is suggested to act as a neuroprotector, functioning as a putative neurotransmitter and immunomodulator. 相似文献
14.
Structural basis for the inhibition of M1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with E. coli aminopeptidase N 下载免费PDF全文
Roopa Jones Ganji Ravikumar Reddi Rajesh Gumpena Anil Kumar Marapaka Tarun Arya Priyanka Sankoju Supriya Bhukya Anthony Addlagatta 《Protein science : a publication of the Protein Society》2015,24(5):823-831
Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia
coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases. 相似文献
15.
Shinsuke Fukui Robert Schwarcz Stanley I. Rapoport Yoshiaki Takada Quentin R. Smith 《Journal of neurochemistry》1991,56(6):2007-2017
To evaluate the potential contribution of circulating kynurenines to brain kynurenine pools, the rates of cerebral uptake and mechanisms of blood-brain barrier transport were determined for several kynurenine metabolites of tryptophan, including L-kynurenine (L-KYN), 3-hydroxykynurenine (3-HKYN), 3-hydroxyanthranilic acid (3-HANA), anthranilic acid (ANA), kynurenic acid (KYNA), and quinolinic acid (QUIN), in pentobarbital-anesthetized rats using an in situ brain perfusion technique. L-KYN was found to be taken up into brain at a significant rate [permeability-surface area product (PA) = 2-3 x 10(-3) ml/s/g] by the large neutral amino acid carrier (L-system) of the blood-brain barrier. Best-fit estimates of the Vmax and Km of saturable L-KYN transfer equalled 4.5 x 10(-4) mumol/s/g and 0.16 mumol/ml, respectively. The same carrier may also mediate the brain uptake of 3-HKYN as D,L-3-HKYN competitively inhibited the brain transfer of the large neutral amino acid L-leucine. For the other metabolites, uptake appeared mediated by passive diffusion. This occurred at a significant rate for ANA (PA, 0.7-1.6 x 10(-3) ml/s/g), and at far lower rates (PA, 2-7 x 10(-5) ml/s/g) for 3-HANA, KYNA, and QUIN. Transfer for KYNA, 3-HANA, and ANA also appeared to be limited by plasma protein binding. The results demonstrate the saturable transfer of L-KYN across the blood-brain barrier and suggest that circulating L-KYN, 3-HKYN, and ANA may each contribute significantly to respective cerebral pools. In contrast, QUIN, KYNA, and 3-HANA cross the blood-brain barrier poorly, and therefore are not expected to contribute significantly to brain pools under normal conditions. 相似文献
16.
Hye Mi Kim Boonjae Jang Young Eun Cheon Myunghyun Paik Suh Junghun Suh 《Journal of biological inorganic chemistry》2009,14(1):151-157
Catalytic drugs based on target-selective artificial proteases have been proposed as a new paradigm in drug design. Peptide-cleavage
agents selective for pathogenic proteins of Alzheimer’s disease, type 2 diabetes mellitus or Parkinson’s disease have been
prepared using the Co(III) aqua complex (Co(III)cyclen) of 1,4,7,10-tetraazacyclododecane as the catalytic center. In the
present study, the Co(III) aqua complex (Co(III)oxacyclen) of 1-oxa-4,7,10-triazacyclododecane was examined in search of an
improved catalytic center for peptide-cleavage agents. An X-ray crystallographic study of [Co(oxacyclen)(CO3)](ClO4), titration of Co(III)oxacyclen, and kinetic studies on the cleavage of albumin, γ-globulin, lysozyme, and myoglobin by Co(III)oxacyclen
were carried out. Considerably higher proteolytic activity was observed for Co(III)oxacyclen in comparison with Co(III)cyclen,
indicating that better target-selective artificial metalloproteases would be obtained using Co(III)oxacyclen as the catalytic
center. The improved proteolytic activity was attributed to either steric effects or the increased Lewis acidity of the Co(III)
center. The kinetic data also predicted that side effects due to the cleavage of nontarget proteins by a catalytic drug based
on Co(III)oxacyclen would be insignificant. 相似文献
17.
Hemant Suryawanshi Mayuresh Anant Sarangdhar Manika Vij Reema Roshan Vijay Pal Singh Munia Ganguli Beena Pillai 《Journal of visualized experiments : JoVE》2015,(106)
MicroRNAs (miRNAs) are key regulators of gene expression. In the brain, vital processes like neurodevelopment and neuronal functions depend on the correct expression of microRNAs. Perturbation of microRNAs in the brain can be used to model neurodegenerative diseases by modulating neuronal cell death. Currently, stereotactic injection is used to deliver miRNA knockdown agents to specific location in the brain. Here, we discuss strategies to design antagomirs against miRNA with locked nucleotide modifications (LNA). Subsequently describe a method for brain specific delivery of antagomirs, uniformly across different regions of the brain. This method is simple and widely applicable since it overcomes the surgery, associated injury and limitation of local delivery in stereotactic injections. We prepared a complex of neurotropic, cell-penetrating peptide Rabies Virus Glycoprotein (RVG) with antagomir against miRNA-29 and injected through tail vein, to specifically deliver in the brain. The antagomir design incorporated features that allow specific targeting of the miRNA and formation of non-covalent complexes with the peptide. The knock-down of the miRNA in neuronal cells, resulted in apoptotic cell death and associated behavioural defects. Thus, the method can be used for acute models of neuro-degeneration through the perturbation of miRNAs. 相似文献
18.
Sprague-Dawley rats (200-260 g) were anesthetized with chloral hydrate (400 mg/kg) and polyethylene cannulae were permanently implanted into the lateral ventricles. One or two days later, L-buthionine-[S,R]-sulfoximine (L-BSO), an apparently selective inhibitor of gamma-glutamylcysteine synthetase, was administered intracerebroventricularly through the cannulae. The brain content of glutathione (GSH) was determined by HPLC with electrochemical detection (gold/mercury electrode) using N-acetylcysteine as internal standard. A time-course study of the changes in the striatum following a single dose of L-BSO (3.2 mg) revealed a maximal depletion of GSH (-60%) approximately 48 h after the administration. The effects of various doses of L-BSO on GSH in the striatum, in the limbic region, and in the cortex were assessed at 24 h and 48 h after the administration. L-BSO (0.02-3.2 mg) produced dose-dependent reductions of GSH in all brain regions studied at both time intervals. In a long-term experiment L-BSO (3.2 mg) was administered every second day. After 4 days, i.e., after two injections, striatal GSH was reduced by approximately 70%. No further depletion of GSH was obtained by additional injections of L-BSO, but GSH was maintained at this low level for the 12 days studied. These results suggest that L-BSO, administered intracerebroventricularly, would serve as a useful tool for evaluation of the biological role of GSH in the CNS. 相似文献
19.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+, K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic “free” calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+, K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+, K+-ATPase by taurine. Normal whole brain homogenate Na+, K+-ATPase activity is 5.1 ± 0.4 (4) μmol Pi± h?1± mg?1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+, K+-ATPase activity of 204.6 ± 5.8 (4) mol Pi± h?1± mg?1 Lowry protein. Taurine activates the Na+, K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2= 39 mM taurine, activation maximum =+87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid > hypotaurine > no activation =β-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+, K+-ATPase. Its action is mediated by a membrane-bound protein. 相似文献
20.
Holmseth S Zhou Y Follin-Arbelet VV Lehre KP Bergles DE Danbolt NC 《The journal of histochemistry and cytochemistry》2012,60(3):174-187
The biomedical research community relies directly or indirectly on immunocytochemical data. Unfortunately, validation of labeling specificity is difficult. A common specificity test is the preadsorption test. This test was intended for testing crude antisera but is now frequently used to validate monoclonal and affinity purified polyclonal antibodies. Here, the authors assess the power of this test. Nine affinity purified antibodies to different epitopes on 3 proteins (EAAT3, slc1a1; EAAT2, slc1a2; BGT1, slc6a12) were tested on samples (tissue sections and Western blots with or without fixation). The selected antibodies displayed some degree of cross-reactivity as defined by labeling of samples from knockout mice. The authors show that antigen preadsorption blocked all labeling of both wild-type and knockout samples, implying that preadsorption also blocked binding to cross-reactive epitopes. They show how this can give an illusion of specificity and illustrate sensitivity-specificity relationships, the importance of good negative controls, that fixation can create new epitopes, and that cross-reacting epitopes present in sections may not be present on Western blots and vice versa. In conclusion, they argue against uncritical use of the preadsorption test and, in doing so, address a number of other issues related to immunocytochemistry specificity testing. 相似文献