首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Developmental abnormalities in endocardial cushions frequently contribute to congenital heart malformations including septal and valvular defects. While compelling evidence has been presented to demonstrate that members of the TGF-beta superfamily are capable of inducing endothelial-to-mesenchymal transdifferentiation in the atrioventricular canal, and thus play a key role in formation of endocardial cushions, the detailed signaling mechanisms of this important developmental process, especially in vivo, are still poorly known. Several type I receptors (ALKs) for members of the TGF-beta superfamily are expressed in the myocardium and endocardium of the developing heart, including the atrioventricular canal. However, analysis of their functional role during mammalian development has been significantly complicated by the fact that deletion of the type I receptors in mouse embryos often leads to early embryonal lethality. Here, we used the Cre/loxP system for endothelial-specific deletion of the type I receptor Alk2 in mouse embryos. The endothelial-specific Alk2 mutant mice display defects in atrioventricular septa and valves, which result from a failure of endocardial cells to appropriately transdifferentiate into the mesenchyme in the AV canal. Endocardial cells deficient in Alk2 demonstrate decreased expression of Msx1 and Snail, and reduced phosphorylation of BMP and TGF-beta Smads. Moreover, we show that endocardial cells lacking Alk2 fail to delaminate from AV canal explants. Collectively, these results indicate that the BMP type I receptor ALK2 in endothelial cells plays a critical non-redundant role in early phases of endocardial cushion formation during cardiac morphogenesis.  相似文献   

5.
Coordination between adjacent tissues plays a crucial role during the morphogenesis of developing organs. In the embryonic heart, two tissues - the myocardium and the endocardium - are closely juxtaposed throughout their development. Myocardial and endocardial cells originate in neighboring regions of the lateral mesoderm, migrate medially in a synchronized fashion, collaborate to create concentric layers of the heart tube, and communicate during formation of the atrioventricular canal. Here, we identify a novel transmembrane protein, Tmem2, that has important functions during both myocardial and endocardial morphogenesis. We find that the zebrafish mutation frozen ventricle (frv) causes ectopic atrioventricular canal characteristics in the ventricular myocardium and endocardium, indicating a role of frv in the regional restriction of atrioventricular canal differentiation. Furthermore, in maternal-zygotic frv mutants, both myocardial and endocardial cells fail to move to the midline normally, indicating that frv facilitates cardiac fusion. Positional cloning reveals that the frv locus encodes Tmem2, a predicted type II single-pass transmembrane protein. Homologs of Tmem2 are present in all examined vertebrate genomes, but nothing is known about its molecular or cellular function in any context. By employing transgenes to drive tissue-specific expression of tmem2, we find that Tmem2 can function in the endocardium to repress atrioventricular differentiation within the ventricle. Additionally, Tmem2 can function in the myocardium to promote the medial movement of both myocardial and endocardial cells. Together, our data reveal that Tmem2 is an essential mediator of myocardium-endocardium coordination during cardiac morphogenesis.  相似文献   

6.
7.
Transformation of atrioventricular (AV) canal endocardium into invasive mesenchyme correlates spatially and temporally with the expression of bone morphogenetic protein (BMP)-2 in the AV myocardium. We revealed the presence of mRNA of Type I BMP receptors, BMPR-1A (ALK3), BMPR-1B (ALK6) and ALK2 in chick AV endocardium at stage-14(-), the onset of epithelial to mesenchymal transformation (EMT), by RT-PCR and localized BMPR-1B mRNA in the endocardium by in situ hybridization. To circumvent the functional redundancies among the Type I BMP receptors, we applied dominant-negative (dn) BMPR-1B-viruses to chick AV explants and whole-chick embryo cultures to specifically block BMP signaling in AV endocardium during EMT. dnBMPR-1B-virus infection of AV endocardial cells abolished BMP-2-supported AV endocardial EMT. Conversely, caBMPR-1B-virus infection promoted AV endocardial EMT in the absence of AV myocardium. Moreover, dnBMPR-1B-virus treatments significantly reduced myocardially supported EMT in AV endocardial-myocardial co-culture. AV cushion mesenchymal cell markers, alpha-smooth muscle actin (SMA), and TGFbeta3 in the endocardial cells were promoted by caBMPR-1B and reduced by dnBMPR-1B infection. Microinjection of the virus into the cardiac jelly in the AV canal at stage-13 in vivo (ovo) revealed that the dnBMPR-1B-virus-infected cells remained in the endocardial epithelium, whereas caBMPR-1B-infected cells invaded deep into the cushions. These results provide evidence that BMP signaling through the AV endocardium is required for the EMT and the activation of the BMP receptor in the endocardium can promote AV EMT in the chick.  相似文献   

8.
Summary : Heart valve development begins with the endothelial‐to‐mesenchymal transition (EMT) of endocardial cells. Although lineage studies have demonstrated contributions from cardiac neural crest and epicardium to semilunar and atrioventricular (AV) valve formation, respectively, most valve mesenchyme derives from the endocardial EMT. Specific Cre mouse lines for fate‐mapping analyses of valve endocardial cells are limited. Msx1 displayed expression in AV canal endocardium and cushion mesenchyme between E9.5 and E11.5, when EMT is underway. Additionally, previous studies have demonstrated that deletion of Msx1 and its paralog Msx2 results in hypoplastic AV cushions and impaired endocardial signaling. A knock‐in tamoxifen‐inducible Cre line was recently generated (Msx1CreERT2) and characterized during embryonic development and after birth, and was shown to recapitulate the endogenous Msx1 expression pattern. Here, we further analyze this knock‐in allele and track the Msx1‐expressing cells and their descendants during cardiac development with a particular focus on their contribution to the valves and their precursors. Thus, Msx1CreERT2 mice represent a useful model for lineage tracing and conditional gene manipulation of endocardial and mesenchymal cushion cells essential to understand mechanisms of valve development and remodeling. genesis 53:337–345, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The bone morphogenetic proteins BMP-2 and BMP-4 and the homeobox gene MSX-2 are required for normal development of many embryonic tissues. To elucidate their possible roles during the remodeling of the tubular heart into a fully septated four-chambered heart, we have localized the mRNA of Bmp-2, Bmp-4, Msx-2 and apoptotic cells in the developing mouse heart from embryonic day (E)11 to E17. mRNA was localized by in situ hybridization, and apoptotic cells by TUNEL (TDT-mediated dUTP-biotin nick end-labeling) as well as by transmission electron microscopy. By analyzing adjacent serial sections, we demonstrated that the expression of Msx-2 and Bmp-2 strikingly overlapped in the atrioventricular canal myocardium, in the atrioventricular junctional myocardium, and in the maturing myocardium of the atrioventricular valves. Bmp-4 was expressed in the outflow tract myocardium and in the endocardial cushion of the outflow tract ridges from E12 to E14. Msx-2 appeared in the mesenchyme of the atrioventricular endocardial cushion from E11 to E14, while Bmp-2 and Bmp-4 were detected between E11 and E14. Apoptotic cells were also detected in the mesenchyme of the endocardial cushion between E12 and E14. Our results suggest that BMP-2 and MSX-2 are tightly linked to the formation of the atrioventricular junction and valves and that BMP-4 is involved in the development of the outflow tract myocardium and of the endocardial cushion. In addition, BMP-2, BMP-4 and MSX-2 and apoptosis seem to be associated with differentiation of the endocardial cushion.  相似文献   

10.
11.
Heart valve malformations are one of the most common types of birth defects, illustrating the complex nature of valve development. Vascular endothelial growth factor (VEGF) signaling is one pathway implicated in valve formation, however its specific spatial and temporal roles remain poorly defined. To decipher these contributions, we use two inducible dominant negative approaches in mice to disrupt VEGF signaling at different stages of embryogenesis. At an early step in valve development, VEGF signals are required for the full transformation of endocardial cells to mesenchymal cells (EMT) at the outflow tract (OFT) but not atrioventricular canal (AVC) endocardial cushions. This role likely involves signaling mediated by VEGF receptor 1 (VEGFR1), which is highly expressed in early cushion endocardium before becoming downregulated after EMT. In contrast, VEGFR2 does not exhibit robust cushion endocardium expression until after EMT is complete. At this point, VEGF signaling acts through VEGFR2 to direct the morphogenesis of the AVC cushions into mature, elongated valve leaflets. This latter role of VEGF requires the VEGF-modulating microRNA, miR-126. Thus, VEGF roles in the developing valves are dynamic, transitioning from a differentiation role directed by VEGFR1 in the OFT to a morphogenetic role through VEGFR2 primarily in the AVC-derived valves.  相似文献   

12.
Cardiac cushion development provides a valuable system to investigate epithelial to mesenchymal transition (EMT), a fundamental process in development and tumor progression. In the atrioventricular (AV) canal, endocardial cells lining the heart respond to a myocardial-derived signal, undergo EMT, and contribute to cushion mesenchyme. Here, we inactivated bone morphogenetic protein 2 (Bmp2) in the AV myocardium of mice. We show that Bmp2 has three functions in the AV canal: to enhance formation of the cardiac jelly, to induce endocardial EMT and to pattern the AV myocardium. Bmp2 is required for myocardial expression of Has2, a crucial component of the cardiac jelly matrix. During EMT, Bmp2 promotes expression of the basic helix-loop-helix factor Twist1, previously implicated in EMT in cancer metastases, and the homeobox genes Msx1 and Msx2. Deletion of the Bmp type 1A receptor, Bmpr1a, in endocardium also resulted in failed cushion formation, indicating that Bmp2 signals directly to cushion-forming endocardium to induce EMT. Lastly, we show that Bmp2 mutants failed to specify the AV myocardium with loss of Tbx2 expression uncovering a myocardial, planar signaling function for Bmp2. Our data indicate that Bmp2 has a crucial role in coordinating multiple aspects of AV canal morphogenesis.  相似文献   

13.
Eph proteins are receptor tyrosine kinases that control changes in cell shape and migration during development. We now describe a critical role for EphA3 receptor signaling in heart development as revealed by the phenotype of EphA3 null mice. During heart development mesenchymal outgrowths, the atrioventricular endocardial cushions, form in the atrioventricular canal. This morphogenetic event requires endocardial cushion cells to undergo an epithelial to mesenchymal transformation (EMT), and results in the formation of the atrioventricular valves and membranous portions of the atrial and ventricular septa. We show that EphA3 knockouts have significant defects in the development of their atrial septa and atrioventricular endocardial cushions, and that these cardiac abnormalities lead to the death of approximately 75% of homozygous EphA3(-/-) mutants. We demonstrate that EphA3 and its ligand, ephrin-A1, are expressed in adjacent cells in the developing endocardial cushions. We further demonstrate that EphA3(-/-) atrioventricular endocardial cushions are hypoplastic compared to wildtype and that EphA3(-/-) endocardial cushion explants give rise to fewer migrating mesenchymal cells than wildtype explants. Thus our results indicate that EphA3 plays a crucial role in the development and morphogenesis of the cells that give rise to the atrioventricular valves and septa.  相似文献   

14.
Endocardial to mesenchymal transformation (EMT) is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC) endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1) show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.  相似文献   

15.
16.
17.
18.
19.
The atrioventricular canal (AVC) physically separates the atrial and ventricular chambers of the heart and plays a crucial role in the development of the valves and septa. Defects in AVC development result in aberrant heart morphogenesis and are a significant cause of congenital heart malformations. We have used a forward genetic screen in zebrafish to identify novel regulators of cardiac morphogenesis. We isolated a mutant, named wickham (wkm), that was indistinguishable from siblings at the linear heart tube stage but exhibited a specific loss of cardiac looping at later developmental stages. Positional cloning revealed that the wkm locus encodes transmembrane protein 2 (Tmem2), a single-pass transmembrane protein of previously unknown function. Expression analysis demonstrated myocardial and endocardial expression of tmem2 in zebrafish and conserved expression in the endocardium of mouse embryos. Detailed phenotypic analysis of the wkm mutant identified an expansion of expression of known myocardial and endocardial AVC markers, including bmp4 and has2. By contrast, a reduction in the expression of spp1, a marker of the maturing valvular primordia, was observed, suggesting that an expansion of immature AVC is detrimental to later valve maturation. Finally, we show that immature AVC expansion in wkm mutants is rescued by depleting Bmp4, indicating that Tmem2 restricts bmp4 expression to delimit the AVC primordium during cardiac development.  相似文献   

20.
Endocardial cells are thought to contribute at least in part to the formation of the endocardial cushion mesenchyme. Here, we created Tie2-Cre transgenic mice, in which expression of Cre recombinase is driven by an endothelial-specific promoter/enhancer. To analyze the lineage of Cre expressing cells, we used CAG-CAT-Z transgenic mice, in which expression of lacZ is activated only after Cre-mediated recombination. We detected pan-endothelial expression of the Cre transgene in Tie2-Cre;CAG-CAT-Z double-transgenic mice. This expression pattern is almost identical to Tie2-lacZ transgenic mice. However, interestingly, we observed strong and uniform lacZ expression in mesenchymal cells of the atrioventricular canal of Tie2-Cre;CAG-CAT-Z double-transgenic mice. We also detected lacZ expression in the mesenchymal cells in part of the proximal cardiac outflow tract, but not in the mesenchymal cells of the distal outflow tract and branchial arch arteries. LacZ staining in Tie2-Cre;CAG-CAT-Z embryos is consistent with endocardial-mesenchymal transformation in the atrioventricular canal and outflow tract regions. Our observations are consistent with previously reported results from Cx43-lacZ, Wnt1-Cre;R26R, and Pax3-Cre;R26R transgenic mice, in which lacZ expression in the cardiac outflow tract identified contributions in part from the cardiac neural crest. Tie2-Cre transgenic mice are a new genetic tool for the analyses of endothelial cell-lineage and endothelial cell-specific gene targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号