首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthetic gene cluster for tobramycin, a 2-deoxystreptamine-containing aminoglycoside antibiotic, was isolated from Streptomyces tenebrarius ATCC 17920. A genomic library of S. tenebrarius was constructed, and a cosmid, pST51, was isolated by the probes based on the core regions of 2-deoxy-scyllo-inosose (DOI) synthase, and L-glutamine:DOI aminotransferase and L-glutamine:scyllo-inosose aminotransferase. Sequencing of 33.9 kb revealed 24 open reading frames (ORFs) including putative tobramycin biosynthetic genes. We demonstrated that one of these ORFs, tbmA, encodes DOI synthase by in vitro enzyme assay of the purified protein. The catalytic residues of TbmA and dehydroquinate synthase were studied by homology modeling. The gene cluster found is likely to be involved in the biosynthesis of tobramycin.  相似文献   

2.
We obtained DNA fragments encoding putative aminotransferases possibly involved in the biosynthesis of aminoglycoside antibiotics from deep-sea sediments of the northwest Pacific Ocean by nested PCR, and 34 individual genes (total 89 clones) were identified. About half of the deep-sea sequences showed similarity with genes of known aminoglycoside-producers, but others were deep-sea specific genes. Furthermore, we found that temperature-gradient gel electrophoresis (TGGE) can be an effective tool in the analysis of these DNA fragments.  相似文献   

3.
We obtained DNA fragments encoding putative aminotransferases possibly involved in the biosynthesis of aminoglycoside antibiotics from deep-sea sediments of the northwest Pacific Ocean by nested PCR, and 34 individual genes (total 89 clones) were identified. About half of the deep-sea sequences showed similarity with genes of known aminoglycoside-producers, but others were deep-sea specific genes. Furthermore, we found that temperature-gradient gel electrophoresis (TGGE) can be an effective tool in the analysis of these DNA fragments.  相似文献   

4.
The quest for the discovery of novel natural products has entered a new chapter with the enormous wealth of genetic data that is now available. This information has been exploited by using whole-genome sequence mining to uncover cryptic pathways, or biosynthetic pathways for previously undetected metabolites. Alternatively, using known paradigms for secondary metabolite biosynthesis, genetic information has been 'fished out' of DNA libraries resulting in the discovery of new natural products and isolation of gene clusters for known metabolites. Novel natural products have been discovered by expressing genetic data from uncultured organisms or difficult-to-manipulate strains in heterologous hosts. Furthermore, improvements in heterologous expression have not only helped to identify gene clusters but have also made it easier to manipulate these genes in order to generate new compounds. Finally, and perhaps the most crucial aspect of the efficient and prosperous use of the abundance of genetic information, novel enzyme chemistry continues to be discovered, which has aided our understanding of how natural products are biosynthesized de novo, and enabled us to rework the current paradigms for natural product biosynthesis.  相似文献   

5.
6.
7.
Genes homologous to 2-deoxystreptamine (DOS) biosynthetic genes were isolated from aminoglycoside producers, Micromonospora and Streptomyces spp., using PCR primers based on the core sequences of 2-deoxy-scyllo-inosose (DOI) synthase and L-glutamine: scyllo-inosose aminotransferase (GIA). Identities of 40-45% were observed for DOI synthases, and 65-75% were observed for GIAs. The gene cluster of tobramycin biosynthesis was isolated from the genomic library of Streptomyces tenebrarius using DOI synthase as a probe. Sequencing of 33.9 kb revealed 24 putative open reading frames including the tobramycin biosynthetic gene cluster (13.8 kb) and a transport protein. This cluster encodes proteins homologous to 2-deoxystreptamine biosynthetic enzymes, glycosyltransferase and other aminocyclitols biosynthetic enzymes. Sequence analysis revealed the evolution of DOI synthases from 3-dehydroquinate (DHQ) synthases in actinomycetes. DOI synthases and GIA are therefore useful for cloning biosynthetic genes of DOS-containing aminocyclitol antibiotics or for screening such metabolites producers.  相似文献   

8.
2-Deoxy-scyllo-inosose (DOI) synthase is the enzyme participating in biosynthesis of 2-deoxystreptamine (DOS)-containing aminoglycoside antibiotics. The gene which encodes the enzyme can be a marker for screening of DOS-containing aminoglycoside-producer and exploration of its biosynthetic gene. Further, this enzyme is expected to be of use in industry, because it converts sugar into 6-membered carbocycle. In the present study, we identified 21 clones encoding DOI synthase from environmental DNA by degenerate PCR. They were clearly divided into two groups. One appeared to derive from actinomycetes, and the other from non-actinomycetes. The latter group was larger (17 clones) than the former (four clones) despite the fact that only one strain of non-actinomycete was identified for DOS-containing aminoglycoside production. This result indicates that there are still many unidentified non-actinomycetes for DOS-containing aminoglycoside biosynthesis. We showed the possibility of identification of novel aminoglycoside-producing non-actinomycete from soil, and for development of more efficient enzymes for industrial use.  相似文献   

9.
Mutation-based treatments are a new development in genetic medicine, in which the nature of the mutation dictates the therapeutic strategy. Interest has recently focused on diseases caused by premature termination codons (PTCs). Drugs inducing the readthrough of these PTCs restore the production of a full-length protein. In this study, we explored the possibility of using aminoglycoside antibiotics to induce the production of a full-length functional p53 protein from a gene carrying a PTC. We identified a human cancer cell line containing a PTC, for which high levels of readthrough were obtained in the presence of aminoglycosides. Using these cells, we demonstrated that aminoglycoside treatment stabilized the mutant mRNA, which would otherwise have been degraded by non-sense-mediated decay, resulting in the production of a functional full-length p53 protein. Finally, we showed that aminoglycoside treatment decreased the viability of cancer cells specifically in the presence of nonsense-mutated p53 gene. These results open possibilities of developing promising treatments of cancers linked with non-sense mutations in tumor suppressor genes. They show that molecules designed to induce stop-codon readthrough can be used to inhibit tumor growth and offer a rational basis for developing new personalized strategies that could diversify the existing arsenal of cancer therapies.  相似文献   

10.
Uncultured soil bacteria are a reservoir of new antibiotic resistance genes   总被引:11,自引:0,他引:11  
Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method.  相似文献   

11.
Glacier retreat is a visible consequence of climate change worldwide. Although taxonomic change of the soil microbiomes in glacier forefields have been widely documented, how microbial genetic potential changes along succession is little known. Here, we used shotgun metagenomics to analyse whether the soil microbial genetic potential differed between four stages of soil development (SSD) sampled along three transects in the Damma glacier forefield (Switzerland). The SSDs were characterized by an increasing vegetation cover, from barren soil, to biological soil crust, to sparsely vegetated soil and finally to vegetated soil. Results suggested that SSD significantly influenced microbial genetic potential, with the lowest functional diversity surprisingly occurring in the vegetated soils. Overall, carbohydrate metabolism and secondary metabolite biosynthesis genes overrepresented in vegetated soils, which could be partly attributed to plant–soil feedbacks. For C degradation, glycoside hydrolase genes enriched in vegetated soils, while auxiliary activity and carbohydrate esterases genes overrepresented in barren soils, suggested high labile C degradation potential in vegetated, and high recalcitrant C degradation potential in barren soils. For N-cycling, organic N degradation and synthesis genes dominated along succession, and gene families involved in nitrification were overrepresented in barren soils. Our study provides new insights into how the microbial genetic potential changes during soil formation along the Damma glacier forefield.  相似文献   

12.
A cluster of genes for ribostamycin (Rbm) biosynthesis was isolated from Streptomyces ribosidificus ATCC 21294. Sequencing of 31.892 kb of the genomic DNA of S. ribosidificus revealed 26 open reading frames (ORFs) encoding putative Rbm biosynthetic genes as well as resistance and other genes. One of ten putative Rbm biosynthetic genes, rbmA, was expressed in S. lividans TK24, and shown to encode 2-deoxy-scyllo-inosose (DOI) synthase. Acetylation of various aminoglycoside-aminocyclitol (AmAcs) by RbmI confirmed it to be an aminoglycoside 3-N-acetyltransferase. Comparison of the genetic control of ribostamycin and butirosin biosynthesis pointed to a common biosynthetic route for these compounds, despite the considerable differences between them in genetic organization.  相似文献   

13.
The vast majority of bacteria in the environment have yet to be cultured. Consequently, a major proportion of both genetic diversity within known gene families and an unknown number of novel gene families reside in these uncultured organisms. Isolation of these genes is limited by lack of sequence information. Where such sequence data exist, PCR directed at conserved sequence motifs recovers only partial genes. Here we outline a strategy for recovering complete open reading frames from environmental DNA samples. PCR assays were designed to target the 59-base element family of recombination sites that flank gene cassettes associated with integrons. Using such assays, diverse gene cassettes could be amplified from the vast majority of environmental DNA samples tested. These gene cassettes contained complete open reading frames, the majority of which were associated with ribosome binding sites. Novel genes with clear homologies to phosphotransferase, DNA glycosylase, methyl transferase, and thiotransferase genes were identified. However, the majority of amplified gene cassettes contained open reading frames with no identifiable homologues in databases. Accumulation analysis of the gene cassettes amplified from soil samples showed no signs of saturation, and soil samples taken at 1-m intervals along transects demonstrated different amplification profiles. Taken together, the genetic novelty, steep accumulation curves, and spatial heterogeneity of genes recovered show that this method taps into a vast pool of unexploited genetic diversity. The success of this approach indicates that mobile gene cassettes and, by inference, integrons are widespread in natural environments and are likely to contribute significantly to bacterial diversity.  相似文献   

14.
The vast majority of bacteria in the environment have yet to be cultured. Consequently, a major proportion of both genetic diversity within known gene families and an unknown number of novel gene families reside in these uncultured organisms. Isolation of these genes is limited by lack of sequence information. Where such sequence data exist, PCR directed at conserved sequence motifs recovers only partial genes. Here we outline a strategy for recovering complete open reading frames from environmental DNA samples. PCR assays were designed to target the 59-base element family of recombination sites that flank gene cassettes associated with integrons. Using such assays, diverse gene cassettes could be amplified from the vast majority of environmental DNA samples tested. These gene cassettes contained complete open reading frames, the majority of which were associated with ribosome binding sites. Novel genes with clear homologies to phosphotransferase, DNA glycosylase, methyl transferase, and thiotransferase genes were identified. However, the majority of amplified gene cassettes contained open reading frames with no identifiable homologues in databases. Accumulation analysis of the gene cassettes amplified from soil samples showed no signs of saturation, and soil samples taken at 1-m intervals along transects demonstrated different amplification profiles. Taken together, the genetic novelty, steep accumulation curves, and spatial heterogeneity of genes recovered show that this method taps into a vast pool of unexploited genetic diversity. The success of this approach indicates that mobile gene cassettes and, by inference, integrons are widespread in natural environments and are likely to contribute significantly to bacterial diversity.  相似文献   

15.
16.
17.
By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7") from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%-28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg(2+)-binding residues. Unlike related APH(4) or APH(7") enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins.  相似文献   

18.
The aminotransferase (BtrR), which is involved in the biosynthesis of butirosin, a 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic produced by Bacillus circulans, catalyses the pyridoxal phosphate (PLP)-dependent transamination reaction both of 2-deoxy-scyllo-inosose to 2-deoxy-scyllo-inosamine and of amino-dideoxy-scyllo-inosose to 2-DOS. The high-resolution crystal structures of the PLP- and PMP-bound forms of BtrR aminotransferase from B. circulans were solved at resolutions of 2.1 A and 1.7 A with R(factor)/R(free) values of 17.4/20.6 and 19.9/21.9, respectively. BtrR has a fold characteristic of the aspartate aminotransferase family, and sequence and structure analysis categorises it as a member of SMAT (secondary metabolite aminotransferases) subfamily. It exists as a homodimer with two active sites per dimer. The active site of the BtrR protomer is located in a cleft between an alpha helical N-terminus, a central alphabetaalpha sandwich domain and an alphabeta C-terminal domain. The structures of the PLP- and PMP-bound enzymes are very similar; however BtrR-PMP lacks the covalent bond to Lys192. Furthermore, the two forms differ in the side-chain conformations of Trp92, Asp163, and Tyr342 that are likely to be important in substrate selectivity and substrate binding. This is the first three-dimensional structure of an enzyme from the butirosin biosynthesis gene cluster.  相似文献   

19.
As inhibitors of chitin synthase, nikkomycins have attracted interest as potential antibiotics. The biosynthetic pathway to these peptide nucleosides in Streptomyces tendae is only partially known. In order to elucidate the last step of the biosynthesis of the aminohexuronic building block, we have heterologously expressed a predicted aminotransferase encoded by the gene nikK from S. tendae in Escherichia coli. The purified protein, which is essential for nikkomycin biosynthesis, has a pyridoxal-5'-phosphate cofactor bound as a Schiff base to lysine 221. The enzyme possesses aminotransferase activity and uses several standard amino acids as amino group donors with a preference for glutamate (Glu > Phe > Trp > Ala > His > Met > Leu). Therefore, we propose that NikK catalyses the introduction of the amino group into the ketohexuronic acid precursor of nikkomycins. At neutral pH, the UV-visible absorbance spectrum of NikK has two absorbance maxima at 357 and 425 nm indicative of the presence of the deprotonated and protonated aldimine with an estimated pK(a) of 8.3. The rate of donor substrate deamination is faster at higher pH, indicating that an alkaline environment favours the deamination reaction.  相似文献   

20.
Despite their biological importance, a significant number of genes for secondary metabolite biosynthesis (SMB) remain undetected due largely to the fact that they are highly diverse and are not expressed under a variety of cultivation conditions. Several software tools including SMURF and antiSMASH have been developed to predict fungal SMB gene clusters by finding core genes encoding polyketide synthase, nonribosomal peptide synthetase and dimethylallyltryptophan synthase as well as several others typically present in the cluster. In this work, we have devised a novel comparative genomics method to identify SMB gene clusters that is independent of motif information of the known SMB genes. The method detects SMB gene clusters by searching for a similar order of genes and their presence in nonsyntenic blocks. With this method, we were able to identify many known SMB gene clusters with the core genes in the genomic sequences of 10 filamentous fungi. Furthermore, we have also detected SMB gene clusters without core genes, including the kojic acid biosynthesis gene cluster of Aspergillus oryzae. By varying the detection parameters of the method, a significant difference in the sequence characteristics was detected between the genes residing inside the clusters and those outside the clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号