首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper describes the predominant conformational forms adopted by dipeptides in aqueous solution. More than 50 dipeptides were subjected to conformational analysis using SYBYL Random Search. The resultant collections of conformers for individual dipeptides, for small groups with related side chain residues and for large groups of about 50 dipeptides were visualized graphically and analysed using a novel three-dimensional pseudo-Ramachandran plot. The distribution of conformers, weighted according to the percentage of each in the total conformer pool, was found to be restricted to nine main combinations of backbone psi (psi) and phi (phi) torsion angles. The preferred psi values were in sectors A7 (+150 degrees to +/-180 degrees), A10 (+60 degrees to +90 degrees) and A4 (-60 degrees to -90 degrees), and these were combined with preferred phi values in sectors B12 (-150 degrees to +/-180 degrees), B9 (-60 degrees to -90 degrees) and B2 (+30 degrees to +60 degrees). These combinations of psi and phi values are distinct from those found in common secondary structures of proteins. These results show that although dipeptides can each adopt many conformations in solution, each possesses a profile of common conformers that is quantifiable. A similarly weighted distribution of dipeptide conformers according to distance between amino-terminal nitrogen and carboxyl-terminal carbon shows how the preferred combinations of backbone torsional angles result in particular N-C geometries for the conformers. This approach gives insight into the important conformational parameters of dipeptides that provide the basis for their molecular recognition as substrates by widely distributed peptide transporters. It offers a basis for the rational design of peptide-based bioactive compounds able to exploit these transporters for targeting and delivery.  相似文献   

2.
The structural perturbation induced by C(alpha)-->N(alpha) exchange in azaamino acid-containing peptides was predicted by ab initio calculation of the 6-31G* and 3-21G* levels. The global energy-minimum conformations for model compounds, For-azaXaa-NH2 (Xaa=Gly, Ala, Leu) appeared to be the beta-turn motif with a dihedral angle of phi= +/- 90 degrees, psi=0 degrees. This suggests that incorporation of the azaXaa residue into the i+2 position of designed peptides could stabilize the beta-turn structure. The model azaLeu-containing peptide, Boc-Phe-azaLeu-Ala-OMe, which is predicted to adopt a beta-turn conformation was designed and synthesized in order to experimentally elucidate the role of the azaamino acid residue. Its structural preference in organic solvents was investigated using 1H NMR, molecular modelling and IR spectroscopy. The temperature coefficients of amide protons, the characteristic NOE patterns, the restrained molecular dynamics simulation and IR spectroscopy defined the dihedral angles [ (phi i+1, psi i+1) (phi i+2, psi i+2)] of the Phe-azaLeu fragment in the model peptide, Boc-Phe-azaLeu-Ala-OMe, as [(-59 degrees, 127 degrees) (107 degrees, -4 degrees)]. This solution conformation supports a betaII-turn structural preference in azaLeu-containing peptides as predicted by the quantum chemical calculation. Therefore, intercalation of the azaamino acid residue into the i+2 position in synthetic peptides is expected to provide a stable beta-turn formation, and this could be utilized in the design of new peptidomimetics adopting a beta-turn scaffold.  相似文献   

3.
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I'beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 --> 1 hydrogen bonds. In addition, a single 4 --> 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C(alpha)-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean tau values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively.  相似文献   

4.
The conformational preferences of azaphenylalanine-containing peptide were investigated using a model compound, Ac-azaPhe-NHMe with ab initio method at the HF/3-21G and HF/6-31G(*) levels, and the seven minimum energy conformations with trans orientation of acetyl group and the 4 minimum energy conformations with cis orientation of acetyl group were found at the HF/6-31G(*) level if their mirror images were not considered. An average backbone dihedral angle of the 11 minimum energy conformations is phi=+/-91 degrees +/-24 degrees , psi =+/-18 degrees +/-10 degrees (or +/-169 degrees +/-8 degrees ), corresponding to the i+2 position of beta-turn (delta(R)) or polyproline II (beta(P)) structure, respectively. The chi(1) angle in the aromatic side chain of azaPhe residue adopts preferentially between +/-60 degrees and +/-130 degrees, which reflect a steric hindrance between the N-terminal carbonyl group or the C-terminal amide group and the aromatic side chain with respect to the configuration of the acetyl group. These conformational preferences of Ac-azaPhe-NHMe predicted theoretically were compared with those of For-Phe-NHMe to characterize the structural role of azaPhe residue. Four tripeptides containing azaPhe residue, Boc-Xaa-azaPhe-Ala-OMe [Xaa=Gly(1), Ala(2), Phe(3), Asn(4)] were designed and synthesized to verify whether the backbone torsion angles of azaPhe reside are still the same as compared with theoretical conformations and how the preceding amino acids of azaPhe residue perturb the beta-turn skeleton in solution. The solution conformations of these tripeptide models containing azaPhe residue were determined in CDCl(3) and DMSO solvents using NMR and molecular modeling techniques. The characteristic NOE patterns, the temperature coefficients of amide protons and small solvent accessibility for the azapeptides 1-4 reveal to adopt the beta-turn structure. The structures of azapeptides containing azaPhe residue from a restrained molecular dynamics simulation indicated that average dihedral angles [(phi(1), psi(1)), (phi(2), psi(2))] of Xaa-azaPhe fragment in azapeptide, Boc-Xaa-azaPhe-Ala-OMe were [(-68 degrees, 135 degrees ), (116 degrees, -1 degrees )], and this implies that the intercalation of an azaPhe residue in tripeptide induces the betaII-turn conformation, and the volume change of a preceding amino acid of azaPhe residue in tripeptides would not perturb seriously the backbone dihedral angle of beta-turn conformation. We believe such information could be critical in designing useful molecules containing azaPhe residue for drug discovery and peptide engineering.  相似文献   

5.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

6.
The crystal structure of Ac-DeltaVal-NMe(2) (DeltaVal = alpha,beta-dehydrovaline) was determined by X-ray crystallography. The found angles phi = -60 degrees and psi = 125 degrees correspond exactly to the respective values of the (i + 1)th residue in idealised beta-turn II/VIa. Ab initio/DFT studies revealed that the molecule adopts the angle psi restricted only to about |130 degrees | and very readily attains the angle phi = about -50 degrees. This is in line with its solid-state conformation. Taken together, these data suggest that the DeltaVal residue combined with a C-terminal tertiary amide is a good candidate at the (i + 1)th position in a type II/VIa beta-turn.  相似文献   

7.
There are many kinds of silks from silkworms and spiders with different structures and properties, and thus, silks are suitable to study the structure-property relationship of fibrous proteins. Silk fibroin from a wild silkworm, Samia cynthia ricini, mainly consists of the repeated similar sequences by about 100 times where there are alternative appearances of the polyalanine (Ala)(12-13) region and the Gly-rich region. In this paper, a sequential model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical sequence of the silk fibroin, was synthesized, and the atomic-level conformations of Gly residues at the N- and C-terminal ends of the polyalanine region were determined as well as that of the central Ala residue using (13)C 2D spin diffusion solid-state nuclear magnetic resonance (NMR) under off-magic angle spinning. In the model peptide with alpha-helical conformation, the torsion angle of the central Ala residue, the 19th Ala, was determined to be (phi, psi) = (-60 degrees, -50 degrees ), which was a typical alpha-helical structure, but the torsion angles of two Gly residues, the 12th and 25th Gly residues, which are located at the N- and C-terminal ends of the polyalanine region, were determined to be (phi, psi) = (-70 degrees, -30 degrees ) and (phi, psi) = (-70 degrees, -20 degrees ), respectively. Thus, it was observed that the turns at both ends of polyalanine with alpha-helix conformation in the model peptide are tightly wound.  相似文献   

8.
The crystal structures of two analogs of Pro-Leu-Gly-NH2 (1), containing a gamma-lactam conformational constraint in place of the -Leu-Gly- sequences, are described. The highly biologically active (S,R)-diastereomer 2a is semi-extended at the C-terminus, with the N-terminal Pro residue in the unusual "C5" conformation [psi 1 = -0.8(15) degrees] stabilized by a (peptide)N-H...N(amino) intramolecular H-bond [the N(3)...N(4) separation is 2.687(11)A]. Conversely, the N,N'-isopropylidene aminal trihydrate of the (S,S)-diastereomer 2b, compound 3, adopts a beta-bend conformation at the C-terminus, as already reported for 1. However, the backbone torsion angles [phi 2 = 57.4(4), psi 2 = -129.9(3) degrees; psi 3 = -92.3(4), phi 3 = 6.4(5) degrees] lie close to the values expected for the corner residues of an ideal type-II' beta-bend. A weak intramolecular 4----1 H-bond is seen between the Gly carboxyamide anti-NH and Pro C = O groups. In the newly formed 2,2,3,4-tetraalkyl-5-oxo-imidazolidin-1-yl moiety the psi 1 torsion angle is 12.9(4) degrees and the intramolecular N(3)...N(4) separation is 2.321(4)A.  相似文献   

9.
The conformational behaviour of deltaZPhe has been investigated in the model dipeptide Ac-deltaZPhe-NHMe and in the model tripeptides Ac-X-deltaZPhe-NHMe with X=Gly,Ala,Val,Leu,Abu,Aib and Phe and is found to be quite different. In the model tripeptides with X=Ala,Val,Leu,Abu,Phe the most stable structure corresponds to phi1=-30 degrees, psi1=120 degrees and phi2=psi2=30 degrees. This structure is stabilized by the hydrogen bond formation between C=O of acetyl group and the NH of the amide group, resulting in the formation of a 10-membered ring but not a 3(10) helical structure. In the peptides Ac-Aib-deltaZPhe-NHMe and Ac-(Aib-deltaZPhe)3-NHMe, the helical conformers with phi = +/-30 degrees, psi = +/-60 degrees for Aib residue and phi=psi= +/-30 degrees for deltaZPhe are predicted to be most stable. The computational studies for the positional preferences of deltaZPhe residue in the peptide containing one deltaZPhe and nine Ala residues reveal the formation of a 3(10) helical structure in all the cases with terminal preferences for deltaZPhe. The conformational behaviour of Ac-(deltaZPhe)n-NHMe with n< or =4 is predicted to be very labile. With n > 4, degenerate conformational states with phi,psi values of 0 degrees +/- 90 degrees adopt helical structures which are stabilized by carbonyl-carbonyl interactions and the N-H-pi interactions between the amino group of every deltaZPhe residue with one C-C edge of its own phenyl ring. The results are in agreement with the experimental finding that screw sense of helix for peptides containing deltaZPhe residues is ambiguous in solution. The helical structures stabilized by hydrogen bond formation are found to be at least 3kCalmol(-1) less stable. Conformational studies have also been carried out for the peptide Ac-(deltaEPhe)6-NHMe and the peptide Ac-deltaAla-(deltaZPhe)6-NHMe containing deltaAla residue at the N-terminal. The N-H-pi interactions are absent in peptide Ac-(deltaEPhe)6-NHMe.  相似文献   

10.
This paper describes the chemical synthesis and crystal molecular conformation of a non-chiral beta-Ala containing model peptide Boc-beta-Ala-Acc5-OCH3. The analysis revealed the existence of two crystallographically independent molecules A and B, in the asymmetric unit. Unexpectedly, while the magnitudes of the backbone torsion angles in both molecules are remarkably similar, the signs of the corresponding torsion angles are reverse therefore, inclining us to suggest the existence of non-superimposable stereogeometrical features in a non-chiral one-component beta-Ala model system. The critical mu torsion angle around CbetaH2-CalphaH2 bond of the beta-Ala residue represents a typical gauche orientation i.e., mu = 67.7 degrees in A and mu = -61.2 degrees in B, providing the molecule an overall crescent shaped topology. The observed conformation contrasts markedly to those determined for the correlated non-chiral model peptides: Boc-beta-Ala-Acc6-OCH3 and Boc-beta-Ala-Aib-OCH3 signifying the role of stereocontrolling elements since the stereochemically constrained Calpha, alpha-disubstituted glycyl residues (e.g., Acc5, Acc6, and the prototype Aib) are known to strongly restrict the peptide backbone conformations in the 3(10)/alpha-helical-regions ( phi approximately +/-60+/-20 degrees, psi approximately +/-30+/-20 degrees) of the Ramachandran map. Unpredictably, the preferred, phi, psi torsion angles of the Acc5 residue fall outside the helical regions of the Ramachandran map and exhibit opposite-handed twists for A and B. The implications of the semi-extended conformation of the Acc5 residue in the construction of backbone-modified novel scaffolds and peptides of biological relevance are highlighted. Taken together, the results indicate that in short linear beta-Ala containing peptides specific structural changes can be induced by selective substitution of non-coded linear- or cyclic symmetrically Calpha,alpha-disubstituted glycines, reinstating the hypothesis that in addition to conformational restrictions, the chemical nature of the neighboring side-chain substituents and local environments collectively influences the stabilization of folding-unfolding behavior of the two methylene units of a beta-Ala residue.  相似文献   

11.
A method is proposed to determine conformations of amino acid residues of the protein and effective correlation time tau c from cross-peak intensities in two-dimensional nuclear Overhauser enhancement (NOESY) spectra. The method consists in fitting complete relaxation matrix of dipeptide unit protons to experimental cross-peak intensities by varying phi, psi, chi torsional angles and tau c. To verify the method, NOESY spectra of basic pancreatic trypsin inhibitor (BPTI) were theoretically generated at mixing times tau m = 25-300 ms and tau c = 4 ns and used for local structure determination. The method works well with optimum for measurement of NOE intensities tau m 100-200 ms. As a result, the backbone phi, psi torsion angles were unambiguously determined at tau m = 100 ms for all but Gly residues of BPTI, and chi 1 angles were determined for the majority of side chains. The obtained dipeptide unit conformations are very close to the BPTI crystallographic structure: root mean square deviation (RMSD) of interproton distances within dipeptide units, on the average, is 0.08 A (maximal deviation 0.44 A), and RMSD of phi and psi angles are 18 and 9 degrees, respectively (maximal deviations are 44 and 22 degrees).  相似文献   

12.
The peptide N-Boc-L-Phe-dehydro-Leu-L-Val-OCH3 was synthesized by the usual workup procedure and finally by coupling the N-Boc-L-Phe-dehydro-Leu-OH to valine methyl ester. It was crystallized from its solution in methanol-water mixture at 4 degrees C. The crystals belong to the triclinic space group P1 with a = 5.972(5) A, b = 9.455(6) A, c = 13.101(6) A, alpha = 103.00(4) degrees, beta = 97.14(5) degrees, gamma = 102.86(5) degrees, V = 690.8(8) A, Z = 1, dm = 1.179(5) Mg m-3 and dc = 1.177(5) Mg m-3. The structure was determined by direct methods using SHELXS86. It was refined by block-diagonal least-squares procedure to an R value of 0.060 for 1674 observed reflections. The C alpha 2-C beta 2 distance of 1.323(9) A in dehydro-Leu is an appropriate double bond length. The bond angle C alpha-C beta-C gamma in the dehydro-Leu residue is 129.4(8) degrees. The peptide backbone torsion angles are theta 1 = -168.6(6) degrees, omega 0 = 170.0(6) degrees, phi 1 = -44.5(9) degrees, psi 1 = 134.5(6) degrees, omega 1 = 177.3(6) degrees, phi 2 = 54.5(9) degrees, psi 2 = 31.1(10) degrees, omega 2 = 171.7(6) degrees, phi 3 = 51.9(8) degrees, psi T3 = 139.0(6) degrees, theta T = -175.7(6) degrees. These values show that the backbone adopts a beta-turn II conformation. As a result of beta-turn, an intramolecular hydrogen bond is formed between the oxygen of the ith residue and NH of the (i + 3)th residue at a distance of 3.134(6) A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The conformational preference of the disaccharide alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----OMe) (1) about the glycosidic torsion angles, phi and psi, was studied by NMR NOESY spectroscopy and molecular mechanics calculations. The NOE data were consistent with either of two distinct conformations close to minima on a calculated phi/psi potential energy surface. Starting from the lowest energy conformation, a 1-ns molecular dynamics (MD) trajectory was computed in vacuo, from which the NOE curves were simulated and compared to the experimentally observed NOESY data.  相似文献   

14.
The synthesis and the solution behavior of the linear peptides containing a beta-homo (beta-H) leucine residue-Boc-Leu-beta-HLeu-Leu-OMe, Boc-beta-HLeu-Leu-beta-HLeu-Leu-OMe, and Boc-Leu-beta-HLeu-Leu-beta-HLeu-Leu-OMe-as well as the solid structure of the tripeptide, are reported. The conformational behavior of the peptides was investigated in solution by two-dimensional nmr. Our data support the existence in solution with different families of conformers in rapid interchange. The crystals of the tripeptide are orthorhombic, space group P2(1)2(1)2, with a = 15.829(1) A, b = 29.659(1) A, c = 6.563(1) A, and Z = 4. The structure has been solved by direct methods and refined to final R1 and wR2 indexes of 0.0530 and 0.1436 for 2420 reflections with I > 2sigma(I). In the solid state, the tripeptide does not present intramolecular H bonds, and the peptide backbone of the two leucine residues adopts a quasi-extended conformation. For the beta-HLeu residue, the backbone conformation is specified by the torsion angles straight phi(2) = -120.9(4) degrees, mu(2) = 56.7(4) degrees, psi(3) = -133.2(4) degrees. The side chains of the three residues assume the same conformation (g(-), g(-), trans), and all peptide bonds, except the urethane group at the N-terminus, are in the trans conformation. Preliminary conformational energy calculations carried out on the Ac-NH-beta-HAla-NHMe underline that the conformations with mu angle equal to 180 degrees and 60 degrees assume lower energy with respect to the others. In addition, we found a larger conformational freedom for the psi angle with respect to the straight phi angle.  相似文献   

15.
Complete 1H and 13C NMR assignments are reported for two glycopeptides representing the carbohydrate-protein linkage region of connective tissue proteoglycans. These glycopeptides are the octasaccharide hexapeptide, Ser(GlcpAbeta(1-->3) Galpbeta(1-->3)Galpbeta(1-->4)Xylpbeta)-Gly-Ser-Gly-Se r (GlcpAbeta(1-->3)Galpbeta(1-->3)Galpbeta(1-->4)Xylp beta)-Gly (1), and the tetrasaccharide dipeptide, Ser(GlcpAbeta(1-->3)Galpbeta(1-->3)Galpbeta(1-->4)X ylpbeta)-Gly (2). The vicinal coupling constant data show that the monosaccharide residues adopt4 C 1 chair conformations. Distance geometry/simulated annealing calculations using 2D NOESY derived distance constraints yielded a single family of structures for the tetrasaccharide moiety, with well defined interglycosidic linkage conformations. The straight phi torsion angles of the glycosidic C1'-O1 bonds showed a strict preference for the -sc range whereas the psi torsion angles (O1-Cn) exhibited dependence upon the interglycosidic linkage position (-ac for beta(1-->3) linkage, +ac for beta(1-->4) linkage). The predominant conformation about the glycopeptide bond is straight phi = -sc and psi = +ac. The presence of strong daN (i, i+1) NOE contacts, and the general absence of dNN (i, i+1) contacts (except for a weak Ser-5/Gly-6 dNN contact) and the dbN (i, i+1) contacts (except for Ser-1/Gly-2) in the ROESY spectrum, suggest that the backbone for 1 is predominantly in an extended conformation. A comparison of the ROESY data for 1 with those obtained from the unglycosylated hexapeptide (3) of the same sequence suggests that glycosylation has only a marginal influence on the backbone conformation of the hexapeptide.  相似文献   

16.
Conformational energies for inulobiose [beta-D-fructofuranosyl-(2----1)-beta-D-fructofuranoside], a model for inulin, were computed with the molecular mechanics program MMP2(85). The torsion angles of the three linkage bonds were driven in 20 degree increments, and the steric energy of all other parameters was minimized. The linkage torsion angles defined by C-1'-C-2'-O-C-1 (phi) and O-C-1-C-2-O-2 (omega) have minima at +60 degrees and -60 degrees, respectively, regardless of side group orientation; accessible minima exist at other staggered conformations. The torsion angle at the central bond C-2'-O-1-C-1-C-2 (psi) was approximately 180 degrees in all the low-energy conformers. This appears to be generally true for rings linked by three bonds. The fructofuranose rings initially had low-energy 4/3T conformations (angle of pseudorotation, phi 2 = 265 degrees) that were retained except when the linkage conformations created severe inter-residue conflicts. In those cases, almost all puckerings of the furanose rings were found.  相似文献   

17.
The torsional potential functions Vt(phi) and Vt(psi) around single bonds N--C alpha and C alpha--C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (phi, psi)-plane with the value of Vtot(phi, psi), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in L-configuration, are Vt(phi) = 1.0 cos (phi + 60 degrees); Vt(psi) = 0.5 cos (psi + 60 degrees) - 1.0 cos (2 psi + 30 degrees) - 0.5 cos (3 psi + 30 degrees). The dipeptide energy maps Vtot(phi, psi) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line psi = 0 degrees. These functions derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.  相似文献   

18.
The conformational behaviour of delta Ala has been investigated by quantum mechanical method PCILO in the model dipeptide Ac-delta Ala-NHMe and in the model tripeptides Ac-X-delta Ala-NHMe with X = Gly, Ala, Val, Leu, Abu and Phe and is found to be quite different. The computational results suggest that in the model tripeptides the most stable conformation corresponds to phi 1 = -30 degrees, psi 1 = 120 degrees and phi 2 = psi 2 = 30 degrees in which the > C = 0 of the acetyl group is involved in hydrogen bond formation with N-H of the amide group. Similar results were obtained for the conformational behaviour of D-Ala in Ac-D-Ala-NHMe and Ac-Ala-D-Ala-NHMe. The conformational behaviour of the amino acids delta Ala, D-Ala, Val and Aib in model tripeptides have been utilized in the designing of left handed helical peptides. It is shown that the peptide HCO-(Ala-D-Ala)3-NHMe can adopt both left and right handed helix whereas in the peptide Ac-(Ala-delta Ala)3-NHMe the lowest energy conformer is beta-bend ribbon structure. Left handed helical structure with phi = 30 degrees, psi = 60 degrees for D-Ala residues and phi = psi = 30 degrees for delta Ala is found to be more stable by 4 kcal mole-1 than the corresponding right handed helical structure for the peptide Ac-(D-Ala-delta Ala)3-NHMe. In both the peptides Ac-(Val-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe the most stable conformer is the left handed helix. Comparisons of results for Ac-(Ala-delta Ala)3-NHMe and Ac(Val-delta Ala)3-NHMe and Ac-(D-Ala-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe also reveal that the Val residues facilitate the population of 3(10) left handed helix over the other conformers. It is also shown that the conformational behaviour of Aib residue depends on the chirality of neighbouring amino acids, i.e. Ac-(Aib-Ala)3-NHMe adopts right handed helical structure whereas Ac-(Aib-D-Ala)3-NHMe is found to be in left handed helical structure.  相似文献   

19.
Our aim was to use a conformational analysis technique developed for peptides to identify structural relationships between bacterial cell wall peptides and beta-lactam antibiotics that might help to explain their different actions as substrates and inhibitors of penicillin binding proteins (PBPs). The conformational forms of the model cell wall peptide Ac-L-Lys(Ac)-D-Ala-D-Ala are described by just a few backbone torsion combinations: three C-terminal carboxylate regions, with Tor8 (psi(i+1)) ranges of D3 region (50 degrees to 70 degrees ), D6 region (140 degrees to 170 degrees ) and D9 region (-50 degrees to -70 degrees ) are combined with either of two Tor6 (phi(i))-Tor4 (psi(i)) combinations, C4 region (-50 degrees to -80 degrees ) with B8 region (-40 degrees to -70 degrees ) or C11 region (30 degrees to 50 degrees ) with B2 region (30 degrees to 70 degrees ). From these results, and comparisons with conformational analyses of various beta-lactams and Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that molecular recognition of cell wall peptide substrates by PBPs requires conformers with backbone torsion angles of D3C4B8. beta-Lactam antibiotics are constrained compounds with fewer conformational forms; these match well the backbone torsions of cell wall peptides at D3C4, allowing their recognition and acylation by PBPs, whereas their unique Tor4 produces differently orientated CO and N atoms that appear to prevent subsequent deacylation, leading to their action as suicide substrates. The results are also related to the selective pressures involved in evolution of beta-lactamases from PBPs. From analysis of conformers of Ac-L-Lys(Ac)-D-Ala-D-Ala and the vancomycin-resistant analogue Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that vancomycin may recognise D6C11B2 conformers, giving it complementary substrate specificity to PBPs. This approach could have applications in the rational design of antibiotics targeted against PBPs and their substrates.  相似文献   

20.
In this paper, we describe the predominant conformational forms adopted by tripeptides and higher oligopeptides in aqueous solution. About 50 tripeptides and almost 20 higher oligopeptides (4-6 residues) were subjected to conformational analysis using SYBYL Random Search. As with dipeptides (Grail BM, Payne JW. J. Peptide Sci. 2000; 6: 186-199), both tripeptides and higher oligopeptides were found to occupy relatively few combinations of psi-phi space that were distinct from those associated with predominant protein secondary structures (e.g. helices and beta-sheets). Again, the preferred psi (psi) values for the first residue (i - 1) were in sectors encompassed by the ranges from +150 degrees to +/-180 degrees, +60 degrees to +90 degrees and -60 degrees to -90 degrees, which were combined with preferred phi (phi) values for the second residue (i) in sectors with ranges from -150 degrees to +/-180 degrees, -60 degrees to -90 degrees and +30 degrees to +60 degrees. It was notable that tripeptides and, to a greater extent, higher oligopeptides adopted an initial psi (psi) (Tor2) from +150 degrees to +/-180 degrees. For tripeptides, their N-C distances (distance between N-terminal nitrogen and C-terminal carbon atoms) distribute about 6.5 A to give shorter, 'folded' conformers that are similar in length to dipeptides, and longer, 'extended' conformers that are distinct. Furthermore, for higher oligopeptides, their N-C distances did not increment in relation to their increasing number of residues and short, 'folded' conformers were still present. These findings have a bearing upon the recognition of these molecules as substrates for widely distributed peptidases and peptide transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号