首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
It has been shown that in the skin of chronically irradiated rats the proportion of collagen type III as compared to collagen type I is increased; on the other hand, no changes in the overall proportion to collagen were observed in the skin. It appears that the increased proportion of collagen type III in chronically irradiated rats is responsible for the decreased solubility of cutaneous collagen in these animals. Concomitantly, indirect evidence was accumulated for the presence of an additional cross-link in type III collagen, present only when irradiated animals served as the collagen source. This cross-link is located subterminally as long as it is not removed by limited pepsin digestion. It was concluded that the physiological decrease in solubility and the decrease in solubility observed in chronically irradiated animals have a different molecular background.  相似文献   

2.
Polarization colors of various purified collagens were studied in fibers of similar thickness. Three different soluble collagens of type I, insoluble collagen type I, lathyritic collagen type I, two p-N-collagens type I, pepsin extract collagen type II, two soluble collagens type III, p-N-collagen type III, and soluble collagen type V were submitted to a routine histopathologic procedure of fixation, preparation of 5-microns-thick sections, staining with Picrosirius red and examination under crossed polars. Polarization colors were determined for thin fibers (0.8 micron or less) an thick fibers, (1.6-2.4 microns). Most thin fibers of collagens and p-N-collagens showed green to yellowish-green polarization colors with no marked differences between the various samples. Thick fibers of all p-N-collagens, lathyritic and normal 0.15 M NaCl-soluble collagens showed green to greenish-yellow polarization colors, while in all other collagens, polarization colors of longer wavelengths (from yellowish-orange to red) were observed. These data suggested that fiber thickness was not the only factor involved in determining the polarization colors of Picrosirius red-stained collagens. Tightly packed and presumably, better aligned collagen molecules showed polarization colors of longer wavelengths. Thus, packing of collagen molecules and not only fiber thickness plays a role in the pattern of polarization colors of Picrosirius red-stained collagens.  相似文献   

3.
Summary Polarization colors of various purified collagens were studied in fibers of similar thickness. Three different soluble collagens of type I, insoluble collagen type I, lathyritic collagen type I, two p-N-collagens type I, pepsin extract collagen type II, two soluble collagens type III, p-N-collagen type III, and soluble collagen type V were submitted to a routine histopathologic procedure of fixation, preparation of 5-m-thick sections, staining with Picrosirius red and examination under crossed polars. Polarization colors were determined for thin fibers (0.8 m or less) and thick fibers, (1.6–2.4 m). Most thin fibers of collagens and p-N-collagens showed green to yellowish-green polarization collors with no marked differences between the various samples. Thick fibers of all p-N-collagens, lathyritic and normal 0.15 M NaCl-soluble collagens showed green to greenish-yellow polarization colors, while in all other collagens, polarization colors of longer wavelengths (from yellowish-orange to red) were observed. These data suggested that fiber thickness was not the only factor involved in determining the polarization colors of Picrosirius red-stained collagens. Tightly packed and presumably, better aligned collagen molecules showed polarization colors of longer wavelengths. Thus, packing of collagen molecules and not only fiber thickness plays a role in the pattern of polarization colors of Picrosirius red-stained collagens.  相似文献   

4.
The response of rocky shore ecosystems to increased nutrient availability was examined in eight land-based mesocosms designed for hard-bottom littoral communities built at Marine Research Station Solbergstrand (Norway). The average seawater volume in each basin was 9 m3 with an average water residence time of about 2 h. A tidal regime resembling that in the fjord was maintained in the basins, and waves were generated regularly. NH4NO3 and H3PO4, at a constant molar NP ratio of 16:1, was added into 6 basins at concentrations 1, 2, 4, 8, 16, 32 M DIN above the background DIN concentration during 1 1/2 years. Two mesocosms were kept as control treatment. Marine communities were introduced into the basins two years prior to the start of nutrient dosage. The effects of nutrient enrichment were few and only marginal during the first year of nutrient addition, while some effects became more obvious during the second year. The growth rate of the periphyton and fast-growing macroalgae communities was stimulated by nutrient enrichment, while the response was less evident among the perennial fucoids. The structure of the macroalgal communities, however, did not change during 16 months' measurements. In contrast, growth on artificial rock substrates during the same period of time revealed intensive growth of the fast-growing Ulva lactuca in high-dosed basins compared with low-dosed and control basins, which were dominated by the fucoid Fucus serratus. The fauna communities exhibited only a minor response to nutrient treatment. The common periwinkle Littorina littorea, however, appeared with increased abundance in the high-dosed basins. The total system metabolism tended to increase slightly, but not significantly, with increased nutrient loading.  相似文献   

5.
6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号