首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis alpha-glucosidase, Aspergillus oryzae alpha-amylase and pig pancreatic alpha-amylase which act on alpha-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae alpha-amylase and pig pancreatic alpha-amylase. A single mutation of Asp199-->Asn, Glu255-->Gln, or Asp329-->Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of alpha-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of alpha-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (alpha-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328-->Asn caused the essential loss in activity, while the mutation His103-->Asn yielded a mutant enzyme that retained 59% of the k0/Km of that for the wild-type enzyme. Since mutants of other alpha-amylases acting on alpha-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by His103-->Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of alpha-1,6-glucosidic bond linkage.  相似文献   

2.
D'Amico S  Gerday C  Feller G 《Gene》2000,253(1):95-105
The alpha-amylase sequences contained in databanks were screened for the presence of amino acid residues Arg195, Asn298 and Arg/Lys337 forming the chloride-binding site of several specialized alpha-amylases allosterically activated by this anion. This search provides 38 alpha-amylases potentially binding a chloride ion. All belong to animals, including mammals, birds, insects, acari, nematodes, molluscs, crustaceans and are also found in three extremophilic Gram-negative bacteria. An evolutionary distance tree based on complete amino acid sequences was constructed, revealing four distinct clusters of species. On the basis of multiple sequence alignment and homology modeling, invariable structural elements were defined, corresponding to the active site, the substrate binding site, the accessory binding sites, the Ca(2+) and Cl(-) binding sites, a protease-like catalytic triad and disulfide bonds. The sequence variations within functional elements allowed engineering strategies to be proposed, aimed at identifying and modifying the specificity, activity and stability of chloride-dependent alpha-amylases.  相似文献   

3.
BACKGROUND: alpha-Amylases constitute a family of enzymes that catalyze the hydrolysis of alpha-D-(1,4)-glucan linkages in starch and related polysaccharides. The Amaranth alpha-amylase inhibitor (AAI) specifically inhibits alpha-amylases from insects, but not from mammalian sources. AAI is the smallest proteinaceous alpha-amylase inhibitor described so far and has no known homologs in the sequence databases. Its mode of inhibition of alpha-amylases was unknown until now. RESULTS: The crystal structure of yellow meal worm alpha-amylase (TMA) in complex with AAI was determined at 2.0 A resolution. The overall fold of AAI, its three-stranded twisted beta sheet and the topology of its disulfide bonds identify it as a knottin-like protein. The inhibitor binds into the active-site groove of TMA, blocking the central four sugar-binding subsites. Residues from two AAI segments target the active-site residues of TMA. A comparison of the TMA-AAI complex with a modeled complex between porcine pancreatic alpha-amylase (PPA) and AAI identified six hydrogen bonds that can be formed only in the TMA-AAI complex. CONCLUSIONS: The binding of AAI to TMA presents a new inhibition mode for alpha-amylases. Due to its unique specificity towards insect alpha-amylases, AAI might represent a valuable tool for protecting crop plants from predatory insects. The close structural homology between AAI and 'knottins' opens new perspectives for the engineering of various novel activities onto the small scaffold of this group of proteins.  相似文献   

4.
5.
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase.  相似文献   

6.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

7.
Porcine pancreatic alpha-amylase (1,4-alpha-D-glucan glucanohydrolase EC 3.2.1.1), a single polypeptide chain, contains nine residues of methionine. Eight different fragments resulting from cleavage of this molecule by cyanogen bromide were characterized. The sequences of six of them have previously been reported. Two missing fragments, CN2 (82 residues) and CN3b1 (76 residues) were purified after breaking of the interpeptidic disulfide bridge and their complete sequence as well as that of the previously purified CN1 peptide (102 residues) are reported here. The location of the three disulfide bridges present in these peptides was determined. Ordering of the carboxymethylated cyanogen bromide fragments was carried out by pulse labeling the amylase chain in vivo. The complete sequence of the porcine pancreatic amylase chain (496 residues) and the location of its five disulfide bridges is presented. Comparison with human and mouse pancreatic and salivary alpha-amylases and with rat pancreatic amylase obtained from the corresponding cDNA nucleotidic sequences shows a high degree of homology between mammalian alpha-amylases.  相似文献   

8.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the alpha-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13,756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional alpha-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus alpha-amylases was observed. The inhibitor is more effective against insect alpha-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional alpha-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

9.
G Buisson  E Due  R Haser    F Payan 《The EMBO journal》1987,6(13):3909-3916
The crystal structure of porcine pancreatic alpha-amylase (PPA) has been solved at 2.9 A resolution by X-ray crystallographic methods. The enzyme contains three domains. The larger, in the N-terminal part, consists of 330 amino acid residues. This central domain has the typical parallel-stranded alpha-beta barrel structure (alpha beta)8, already found in a number of other enzymes like triose phosphate isomerase and pyruvate kinase. The C-terminal domain forms a distinct globular unit where the chain folds into an eight-stranded antiparallel beta-barrel. The third domain lies between a beta-strand and a alpha-helix of the central domain, in a position similar to those found for domain B in triose phosphate isomerase and pyruvate kinase. It is essentially composed of antiparallel beta-sheets. The active site is located in a cleft within the N-terminal central domain, at the carboxy-end of the beta-strands of the (alpha beta)8 barrel. Binding of various substrate analogues to the enzyme suggests that the amino acid residues involved in the catalytic reaction are a pair of aspartic acids. A number of other residues surround the substrate and seem to participate in its binding via hydrogen bonds and hydrophobic interactions. The 'essential' calcium ion has been located near the active site region and between two domains, each of them providing two calcium ligands. On the basis of sequence comparisons this calcium binding site is suggested to be a common structural feature of all alpha-amylases. It represents a new type of calcium-protein interaction pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis α-glucosidase, Aspergillus oryzae α-amylase and pig pancreatic α-amylase which act on α-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae α-amylase and pig pancreatic α-amylase. A single mutation of Asp199→Asn, Glu255→Gln, or Asp329→Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of α-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of α-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (α-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328→Asn caused the essential loss in activity, while the mutation His103→Asn yielded a mutant enzyme that retained 59% of the κ0/Km of that for the wild-type enzyme. Since mutants of other α-amylases acting on α-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by Hisl03→Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of α-1,6-glucosidic bond linkage.  相似文献   

11.
Glycoside hydrolase family 77 (GH77) belongs to the alpha-amylase superfamily (Clan H) together with GH13 and GH70. GH77 enzymes are amylomaltases or 4-alpha-glucanotransferases, involved in maltose metabolism in microorganisms and in starch biosynthesis in plants. Here we characterized the amylomaltase from the hyperthermophilic bacterium Thermus thermophilus HB8 (Tt AMase). Site-directed mutagenesis of the active site residues (Asp293, nucleophile; Glu340, general acid/base catalyst; Asp395, transition state stabilizer) shows that GH77 Tt AMase and GH13 enzymes share the same catalytic machinery. Quantification of the enzyme's transglycosylation and hydrolytic activities revealed that Tt AMase is among the most efficient 4-alpha-glucanotransferases in the alpha-amylase superfamily. The active site contains at least seven substrate binding sites, subsites -2 and +3 favoring substrate binding and subsites -3 and +2 not, in contrast to several GH13 enzymes in which subsite +2 contributes to oligosaccharide binding. A model of a maltoheptaose (G7) substrate bound to the enzyme was used to probe the details of the interactions of the substrate with the protein at acceptor subsites +2 and +3 by site-directed mutagenesis. Substitution of the fully conserved Asp249 with a Ser in subsite +2 reduced the activity 23-fold (for G7 as a substrate) to 385-fold (for maltotriose). Similar mutations reduced the activity of alpha-amylases only up to 10-fold. Thus, the characteristics of acceptor subsite +2 represent a main difference between GH13 amylases and GH77 amylomaltases.  相似文献   

12.
A cDNA library was constructed in a Uni-ZAP XR vector using mRNA isolated from porcine pancreas. A full-length alpha-amylase cDNA was obtained using a combination of library screening and nested polymerase chain reaction. Sequencing of the clone revealed a 1536-nucleotide (nt) open reading frame encoding a protein of 496 amino acid (aa) residues with a signal peptide of 15 aa. The calculated molecular mass of the enzyme was 55354 Da, in accordance with those of the purified porcine pancreatic alpha-amylase forms (PPAI and PPAII) as determined by mass spectrometry. A comparison of the deduced aa sequence with published peptidic sequences of PPAI identified a number of mismatches. The sequence of the cDNA reported here provides a sequence reference for PPA in excellent agreement with the refined three-dimensional structures of both PPAI and PPAII. No evidence for a second variant was found in the cDNA library and it is most likely that PPAI and PPAII are two forms of the same protein. The primary structure of PPA shows high homology with human, mouse and rat pancreatic alpha-amylases. The 304-310 region, corresponding to a mobile loop involved in substrate binding and processing near the active site, is fully conserved.  相似文献   

13.
Bacillus licheniformis alpha-amylase (BLA) is a starch-degrading enzyme that is highly thermostable although it is produced by a rather mesophilic organism. Over the last decade, the origin of BLA thermal properties has been extensively investigated in both academic and industrial laboratories, yet it is poorly understood. Here, we have used structure-based mutagenesis in order to probe the role of amino acid residues previously proposed as being important for BLA thermostability. Residues involved in salt-bridges, calcium binding or potential deamidation processes have been selected and replaced with various amino acids using a site-directed mutagenesis method, based on informational suppression. A total of 175 amylase variants were created and analysed in vitro. Active amylase variants were tested for thermostability by measuring residual activities after incubation at high temperature. Out of the 15 target residues, seven (Asp121, Asn126, Asp164, Asn192, Asp200, Asp204 and Ala269) were found to be particularly intolerant to any amino acid substitutions, some of which lead to very unstable mutant enzymes. By contrast, three asparagine residues (Asn172, Asn188 and Asn190) could be replaced with amino acid residues that significantly increase the thermostability compared to the wild-type enzyme. The highest stabilization event resulted from the substitution of phenylalanine in place of asparagine at position 190, leading to a sixfold increase of the enzyme's half-life at 80 degrees C (pH 5.6, 0.1 mM CaCl(2)).These results, combined with those of previous mutational analyses, show that the structural determinants contributing to the overall thermostability of BLA concentrate in domain B and at its interface with the central A domain. This region contains a triadic Ca-Na-Ca metal-binding site that appears extremely sensitive to any modification that may alter or reinforce the network of electrostatic interactions entrapping the metal ions. In particular, a loop spanning from residue 178 to 199, which undergoes pronounced conformational changes upon removal of calcium, appears to be the key feature for maintaining the enzyme structural integrity. Outside this region, most salt-bridges that were destroyed by mutations were found to be dispensable, except for an Asp121-Arg127 salt-bridge that contributes to the enhanced thermostability of BLA compared to other homologous bacterial alpha-amylases. Finally, our studies demonstrate that the natural resistance of BLA against high temperature is not optimized and can be enhanced further through various means, including the removal of possibly deamidating residues.  相似文献   

14.
Interaction of human alpha-amylases with inhibitors from wheat flour   总被引:1,自引:0,他引:1  
The interaction of four purified alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) inhibitors with human salivary and pancreatic alpha-amylases was investigated. The inhibitory activity of the four proteins towards salivary alpha-amylase was significantly increased by pre-incubation of the enzyme with inhibitor before adding substrate. This effect was not observed with the inhibition of pancreatic alpha-amylase by inhibitors 1 and 2. Inhibition of both amylases was affected to different degrees by incubating starch with inhibitor prior to the addition of enzyme. Maltose, at concentrations which only slightly affected amylase activity, prevented the inhibition of both enzymes by all four inhibitors. Gel filtration studies on salivary amylase-inhibitor mixtures showed the formation of EI complexes on a mol-to-mol ratio. A similar complex between pancreatic alpha-amylase and inhibitor 4 was observed, though complex formation between pancreatic alpha-amylase and the other inhibitors was not clearly demonstrated.  相似文献   

15.
The alpha-amylase family is a large group of starch processing enzymes [Svensson, B. (1994) Plant Mol. Biol. 25, 141-157]. It is characterized by four short sequence motifs that contain the seven fully conserved amino acid residues in this family: two catalytic carboxylic acid residues and four substrate binding residues. The seventh conserved residue (Asp135) has no direct interactions with either substrates or products, but it is hydrogen-bonded to Arg227, which does bind the substrate in the catalytic site. Using cyclodextrin glycosyltransferase as an example, this paper provides for the first time definite biochemical and structural evidence that Asp135 is required for the proper conformation of several catalytic site residues and therefore for activity.  相似文献   

16.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The amino-acid sequence of alpha-amylase isolated from the pancreas of the ostrich, Struthio camelus was determined. The alpha-amylase (OPA) consisted of 497 amino acid residues with pyroglutamic acid at the N-terminus and no oligosaccharide. Amino acid identity between OPA and chicken, porcine and human pancreatic alpha-amylases individually, was found to be 88, 82 and 86%, respectively.  相似文献   

18.
Models for the binding of the sarcin-ricin loop (SRL) of 28S ribosomal RNA to ricin A chain (RTA) suggest that several surface exposed arginine residues surrounding the active site cleft make important interactions with the RNA substrate. The data presented in this study suggest differing roles for these arginyl residues. Substitution of Arg48 or Arg213 with Ala lowered the activity of RTA 10-fold. Furthermore, substitution of Arg213 with Asp lowered the activity of RTA 100-fold. The crystal structure of this RTA variant showed it to have an unaltered tertiary structure, suggesting that the positively charged state of Arg213 is crucial for activity. Substitution of Arg258 with Ala had no effect on activity, although substitution with Asp lowered activity 10-fold. Substitution of Arg134 prevented expression of folded protein, suggesting a structural role for this residue. Several models have been proposed for the binding of the SRL to the active site of RTA in which the principal difference lies in the conformation of the second 'G' in the target GAGA motif in the 28S rRNA substrate. In one model, the sidechain of Asn122 is proposed to make interactions with this G, whereas another model proposes interactions with Asp75 and Asn78. Site-directed mutagenesis of these residues of RTA favours the first of these models, as substitution of Asn78 with Ser yielded an RTA variant whose activity was essentially wild-type, whereas substitution of Asn122 reduced activity 37.5-fold. Substitution of Asp75 failed to yield significant folded protein, suggesting a structural role for this residue.  相似文献   

19.
Asn112 is located at the active site of thermolysin, 5-8 A from the catalytic Zn2+ and catalytic residues Glu143 and His231. When Asn112 was replaced with Ala, Asp, Glu, Lys, His, and Arg by site-directed mutagenesis, the mutant enzymes N112D and N112E, in which Asn112 is replaced with Asp and Glu, respectively, were secreted as an active form into Escherichia coli culture medium, while the other four were not. In the hydrolysis of a neutral substrate N-[3-(2-furyl)acryloyl]-Gly-L-Leu amide, the kcat/Km values of N112D and N112E exhibited bell-shaped pH-dependence, as did the wild-type thermolysin (WT). The acidic pKa of N112D was 5.7 +/- 0.1, higher by 0.4 +/- 0.2 units than that of WT, suggesting that the introduced negative charge suppressed the protonation of Glu143 or Zn2+-OH. In the hydrolysis of a negatively charged substrate, N-carbobenzoxy-l-Asp-l-Phe methyl ester (ZDFM), the pH-dependence of kcat/Km of the mutants decreased with increase in pH from 5.5 to 8.5, while that of WT was bell-shaped. This difference might be explained by the electrostatic repulsion between the introduced Asp/Glu and ZDFM, suggesting that introducing ionizing residues into the active site of thermolysin might be an effective means of modifying its pH-activity profile.  相似文献   

20.
You YO  van der Donk WA 《Biochemistry》2007,46(20):5991-6000
Lantibiotic synthetases catalyze the dehydration of Ser and Thr residues in their peptide substrates to dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively, followed by the conjugate addition of Cys residues to the Dha and Dhb residues to generate the thioether cross-links lanthionine and methyllanthionine, respectively. In this study ten conserved residues were mutated in the dehydratase domain of the best characterized family member, lacticin 481 synthetase (LctM). Mutation of His244 and Tyr408 did not affect dehydration activity with the LctA substrate whereas mutation of Asn247, Glu261, and Glu446 considerably slowed down dehydration and resulted in incomplete conversion. Mutation of Lys159 slowed down both steps of the net dehydration: phosphorylation of Ser/Thr residues and the subsequent phosphate elimination step to form the dehydro amino acids. Mutation of Arg399 to Met or Leu resulted in mutants that had phosphorylation activity but displayed greatly decreased phosphate elimination activity. The Arg399Lys mutant retained both activities, however. Similarly, the Thr405Ala mutant phosphorylated the LctA substrate but had compromised elimination activity. Finally, mutation of Asp242 or Asp259 to Asn led to mutant enzymes that lacked detectable dehydration activity. Whereas the Asp242Asn mutant retained phosphate elimination activity, the Asp259Asn mutant was not able to eliminate phosphate from a phosphorylated substrate peptide. A model is presented that accounts for the observed phenotypes of these mutant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号