首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinins are vasoactive and pro-inflammatory peptides generated by the cleavage of the kininogen by kallikreins. Two kinin receptors have been described and denominated B1 and B2. Obesity frequently accompanies other pathologies, such as diabetes and hypertention. The clustering of these pathologies is usually known as "metabolic syndrome". Mice lacking leptin gene (ob/ob) are severely obese and hyperphagic. Using quantitative RT-PCR analysis of B1 and B2 mRNAs expression, we described for the first time a correlation between the kallikrein-kinin system (KKS) and severe obesity in mice. The ob/ob mice presented lower expression of B2 mRNA in the white adipose tissue (WAT) and hypothalamus, both primary sites for neuroendocrine regulation of the energetic metabolism. B1 mRNA, however, is overexpressed in these tissues of ob/ob mice. An upregulation of the B1 mRNA has also been seen in liver, abdominal aorta and stomach fundus. However, different from the lean mice, the expression of the B1 mRNA in brown adipose tissue (BAT) and heart is completely abolished. Our data show that kinin receptors are differently modulated in distinct tissues in obesity. These findings suggest a connection between the KKS and obesity, and suggest that kinin receptors could be involved in the ethiopathogenesis of the metabolic syndrome.  相似文献   

2.
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids. Thus far, three isoforms of SCD (SCD1, SCD2, and SCD3) have been identified and characterized. Regulation of the SCD1 isoform has been shown to be an important component of the metabolic actions of leptin in liver, but the effects of leptin on SCD isoforms in other tissues have not been investigated. We found that although the mRNA levels of SCD1 and SCD2 were not affected by leptin deficiency in the hearts of ob/ob mice, the SCD activity and levels of monounsaturated fatty acids were increased, implying the existence of another SCD isoform. This observation has led to the cDNA cloning and characterization of a fourth SCD isoform (SCD4) that is expressed exclusively in the heart. SCD4 encodes a 352-amino acid protein that shares 79% sequence identity with the SCD1, SCD2, and SCD3 isoforms. Liver X receptor alpha (LXR alpha) agonists and a high carbohydrate fat-free diet induced SCD4 expression, but unlike SCD1, SCD4 expression was not repressed by dietary polyunsaturated fatty acids. SCD4 mRNA levels were elevated 5-fold in the hearts of leptin-deficient ob/ob mice relative to wild type controls. Treatment of ob/ob mice with leptin decreased mRNA levels of SCD4, whereas levels of SCD1 and SCD2 were not affected. Furthermore, in the hearts of SCD1-deficient mice, SCD4 mRNA levels were induced 3-fold, whereas the levels of SCD2 were not altered. The current studies identify a novel heart-specific SCD isoform that demonstrates tissue-specific regulation by leptin and dietary factors.  相似文献   

3.
Now that complete genome sequences are available for a variety of organisms, the elucidation of gene functions involved in metabolism necessarily includes a better understanding of cellular responses upon mutations on all levels of gene products, mRNA, proteins, and metabolites. Such progress is essential since the observable properties of organisms - the phenotypes - are produced by the genotype in juxtaposition with the environment. Whereas much has been done to make mRNA and protein profiling possible, considerably less effort has been put into profiling the end products of gene expression, metabolites. To date, analytical approaches have been aimed primarily at the accurate quantification of a number of pre-defined target metabolites, or at producing fingerprints of metabolic changes without individually determining metabolite identities. Neither of these approaches allows the formation of an in-depth understanding of the biochemical behaviour within metabolic networks. Yet, by carefully choosing protocols for sample preparation and analytical techniques, a number of chemically different classes of compounds can be quantified simultaneously to enable such understanding. In this review, the terms describing various metabolite-oriented approaches are given, and the differences among these approaches are outlined. Metabolite target analysis, metabolite profiling, metabolomics, and metabolic fingerprinting are considered. For each approach, a number of examples are given, and potential applications are discussed.  相似文献   

4.
5.
6.
Leptin is a circulating pleiotropic hormone that play an important role in appetite control, fat metabolism, regulation of body weight, fetus growth, growth and aging of adults and hematopoiesis. It is expressed abundantly and specifically in the adipose tissue. A liver cell with developed steatosis represents a cell metabolism similar to metabolism of cells of adipose tissue. Analyses of serum leptin and free leptin receptor in the serum of patients with steatosis showed significant variations from reference limits of normal values. However in liver tissue with verified steatosis detection of mRNA gene for leptin was not proven. Such expression of ob gene for leptin was not found even in the liver tissue without steatosis. With respect to the absence of ob gene expression, the direct effect of ob gene expression on other parameters of leptin metabolism could not be evaluated. The RT-PCR method with verified specificity and satisfying sensitivity was developed. The results obtained from analysis of serum leptin and free leptin receptor in the serum are presented and evaluated. The used methods were verified and reference limits for Czech population were defined in dependence on age and other clinical parameters.  相似文献   

7.
8.
9.
Leptin, the ob gene product secreted by adipocytes, controls overall energy balance. We previously showed that leptin administration to leptin-deficient obese (ob/ob) mice suppressed mRNA expression and activity of renal 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1). In leptin receptor-deficient (db/db) mice, we presently examined whether leptin affects 1alpha-hydroxylase expression in renal tubules through the active form of the leptin receptor (ObRb). Elevated serum concentrations of calcium and 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in untreated ob/ob mice showed sharp reduction with leptin administration (4 mg/kg, i.p. every 12h for 2 days); no such reduction of elevation occurred in db/db mice. ObRb mRNA was expressed in kidney, brain, fat, lung, and bone in wild-type and ob/ob mice, but not db/db mice. The ob/ob and db/db mice showed large increases in renal 1alpha-hydroxylase mRNA expression and activity. Leptin administration (4 mg/kg) completely abrogated these increases in ob/ob but not db/db mice. Renal 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) mRNA synthesis also was greatly elevated in ob/ob and db/db mice; excesses decreased significantly with leptin administration in ob/ob mice, but increased in db/db mice. Renal tubular cells in primary culture expressed mRNAs including proximal tubules markers (1alpha-hydroxylase and megalin), parathyroid hormone receptor, and vitamin D receptor. Calcitonin receptor mRNA, synthesized mainly in distal tubules, was scant, indicating that most cultured cells were from proximal tubules. Cells did not express ObRb mRNA. Forskolin exposure at 10(-6)M for 3 or 6h significantly increased 1alpha-hydroxylase mRNA. Leptin at 10(-6)M did not change mRNA expression in either presence or absence of forskolin. Accordingly, leptin attenuates renal 1alpha-hydroxylase gene expression through ObRb. Furthermore, leptin appears to act indirectly on renal proximal tubules to regulate 1alpha-hydroxylase gene expression.  相似文献   

10.
Nonalchoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction and is associated with metabolic diseases, including obesity, insulin resistance, and type 2 diabetes. We mapped a quantitative trait locus (QTL) for NAFLD to chromosome 17 in a cross between C57BL/6 (B6) and BTBR mouse strains made genetically obese with the Lep(ob/ob) mutation. We identified Tsc2 as a gene underlying the chromosome 17 NAFLD QTL. Tsc2 functions as an inhibitor of mammalian target of rapamycin, which is involved in many physiological processes, including cell growth, proliferation, and metabolism. We found that Tsc2(+/-) mice have increased lipogenic gene expression in the liver in an insulin-dependent manner. The coding single nucleotide polymorphism between the B6 and BTBR strains leads to a change in the ability to inhibit the expression of lipogenic genes and de novo lipogenesis in AML12 cells and to promote the proliferation of Ins1 cells. This difference is due to a different affinity of binding to Tsc1, which affects the stability of Tsc2.  相似文献   

11.
Uncoupling protein 2 (UCP2) has been proposed to play a prominent role in the regulation of energy balance. UCP2 mRNA expression is upregulated in white adipose tissue (WAT) and liver, but is not altered in skeletal muscle in genetically obese ob/ob mice. The mechanisms involved in the upregulation of UCP2 in obesity have not been investigated. We have now examined the potential role of leptin, hyperphagia, increased tissue lipid content, and overexpression of tumor necrosis factor (TNF)-alpha in the upregulation of UCP2 mRNA expression in the liver and WAT in ob/ob mice. Treatment of ob/ob mice with leptin for 3 days significantly reduced their food intake but had no effect on the upregulation of UCP2 mRNA levels in the liver or WAT. To investigate the effect of feeding and higher tissue lipid content on the upregulation of UCP2 in liver and WAT, we compared UCP2 mRNA levels in ad-libitum fed and 72-h fasted control and ob/ob mice. In controls, fasting had no effect on UCP2 mRNA levels in liver, but increased UCP2 mRNA in WAT suggesting that the effects of fasting on UCP2 mRNA levels are tissue-specific. In ob/ob mice, fasting did not lower UCP2 mRNA levels in liver or WAT suggesting that the upregulation of UCP2 in ob/ob mice is not merely a direct consequence of increased food intake. 72-h fasting lowered hepatic total lipid content by 34% and 36% in control and ob/ob mice, respectively, without any corresponding decrease in hepatic UCP2 mRNA levels, suggesting that the enhanced UCP2 expression in the liver of ob/ob mice is not secondary to lipid accumulation in their livers. Although TNF-alpha has been shown to acutely increase UCP2 mRNA levels in liver and WAT, and is overexpressed in adipose tissue in obesity, deletion of the genes for both TNF receptors in ob/ob mice produces a further increase in UCP2 mRNA expression in liver and adipose tissue indicating a paradoxical inhibitory role. Taken together, these results suggest that the upregulation of UCP2 mRNA levels in the liver and WAT of ob/ob mice is not due to the lack of leptin, hyperphagia, increased tissue lipid content, or over-expression of TNF-alpha.  相似文献   

12.
It was previously shown that circulating levels of leptin and apolipoprotein M (apoM) correlate to each other. In this study, we examined whether plasma leptin and leptin-receptors are of importance for apoM expression in vivo. It was found that in both liver and kidney, expression of apoM was significantly lower in leptin deficient ob/ob mice and in leptin-receptor deficient db/db mice than in control mice. Furthermore, leptin administration (0.5 or 1.5 microg/g body weight) significantly increased plasma apoM levels and apoM mRNA levels in liver and in kidney in ob/ob mice. We conclude that both leptin and leptin-receptor are essential for the apoM expression, indicating that leptin is physiologically regulating apoM synthesis in vivo.  相似文献   

13.
14.
15.
Leptin resistance is a common feature of obesity and the metabolic syndrome. However, the regulated expression of the leptin receptor (Ob-R) has not been studied in detail. Expression profiling of liver mRNA in leptin-treated wild-type mice revealed a marked increase in leptin receptor mRNA levels, which had not previously been described. This was confirmed by isoform-specific real-time PCR, which showed a >25-fold increase in the mRNAs encoding the short forms (Ob-Ra, Ob-Rc) and a >10-fold increase in the mRNA encoding the long (Ob-Rb) form of the leptin receptor in liver. In parallel, we also observed induction of plasma-soluble leptin receptor (SLR) protein by leptin administration, pair feeding, and short term food restriction. However, induction of SLR by leptin is abolished in mice with selective deletion of Ob-R from liver using Cre-LoxP technology. These data suggest that the liver is a major source of Ob-R mRNA expression under conditions of negative energy balance. Membrane-bound Ob-R is then shed into the circulation as SLR. Our study thus reveals an unexpected role of the liver in modulating total circulating leptin levels and possibly its biological activity.  相似文献   

16.
17.
18.
In this investigation, the effects on proton leak of leptin administration to ob/ob mice was measured for liver mitochondria. We and others have shown that proton leak is approximately 3 times greater in liver mitochondria from ob/ob mice compared to lean controls at any given membrane potential. The results are consistent with obese mammals having higher lean mass-specific metabolic rates compared to lean controls. The increase in proton leak rate at any given membrane potential cannot be explained by the presence of free fatty acids associated with mitochondria isolated from the obese animals. The difference in proton leak must therefore represent a real difference in inner membrane permeability. Acute leptin (OB protein) administration restores the liver mitochondrial proton leak rate of ob/ob mice to that of lean controls. There was no effect on proton leak rate of liver mitochondria from sham-treated ob/ob mice. These novel results indicate a role for leptin, either directly or indirectly, in regulating the efficiency of oxidative phosphorylation.  相似文献   

19.
Concentrations of leptin, an adipocyte-derived hormone, are elevated in obesity. Recently, leptin has been shown to participate in multiple biological actions including inflammation, reproduction, and angiogenesis. Leptin has also been documented as a critical component in the process of wound healing; however, leptin involvement in cardiovascular disease is poorly understood. We examined the expression of leptin (ob) and leptin receptor (ob-R) genes in the rat heart following ischemia/reperfusion, which was induced by coronary artery ligation, and mRNA was obtained from hearts 0.5 to 36 h after initiating reperfusion. Expressions of ob and ob-R mRNA were examined by real-time quantitative RT-PCR and immunohistochemistry. The ob and ob-Ra mRNA and protein expressions were significantly increased (p<0.01) and ob-Rb mRNA was significantly decreased (p<0.01) in hearts after 8 h of reperfusion. Furthermore, ob and ob-R proteins were expressed in injured myocytes where inflammatory cells infiltrated. In contrast, those expressions were not influenced in hearts after 8 h of ischemia stress only. To determine the functional effects of leptin on the ischemic/reperfused heart, rats were treated with anti-leptin antibodies prior to ischemia/reperfusion; however, this treatment did not affect the elevation of mRNA expression levels of inflammatory markers such as TNF-alpha and IL-1beta in ischemic hearts. Our results demonstrated for the first time that ischemia/reperfusion induced leptin and leptin receptor gene expression in the rat heart. This study helps to elucidate the mechanisms behind the onset and development of ischemic heart disease concomitant with obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号