首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have solved the crystal structures of Clostridium botulinum C3 exoenzyme free and complexed to NAD in the same crystal form, at 2.7 and 1.95 A, respectively. The asymmetric unit contains four molecules, which, in the free form, share the same conformation. Upon NAD binding, C3 underwent various conformational changes, whose amplitudes were differentially limited in the four molecules of the crystal unit. A major rearrangement concerns the loop that contains the functionally important ARTT motif (ADP-ribosyltransferase toxin turn-turn). The ARTT loop undergoes an ample swinging motion to adopt a conformation that covers the nicotinamide moiety of NAD. In particular, Gln-212, which belongs to the ARTT motif, flips over from a solvent-exposed environment to a buried conformation in the NAD binding pocket. Mutational experiments showed that Gln-212 is neither involved in NAD binding nor in the NAD-glycohydrolase activity of C3, whereas it plays a critical role in the ADP-ribosyl transfer to the substrate Rho. We observed additional NAD-induced movements, including a crab-claw motion of a subdomain that closes the NAD binding pocket. The data emphasized a remarkable NAD-induced plasticity of the C3 binding pocket and suggest that the NAD-induced ARTT loop conformation may be favored by the C3-NAD complex to bind to the substrate Rho. Our structural observations, together with a number of mutational experiments suggest that the mechanisms of Rho ADP-ribosylation by C3-NAD may be more complex than initially anticipated.  相似文献   

2.
Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.  相似文献   

3.
C3 exoenzymes from bacterial pathogens ADP-ribosylate and inactivate low-molecular-mass GTPases of the Rho subfamily. Ral, a Ras subfamily GTPase, binds the C3 exoenzymes from Clostridium botulinum and C. limosum with high affinity without being a substrate for ADP ribosylation. In the complex, the ADP-ribosyltransferase activity of C3 is blocked, while binding of NAD and NAD-glycohydrolase activity remain. Here we report the crystal structure of C3 from C. botulinum in a complex with GDP-bound RalA at 1.8 A resolution. C3 binds RalA with a helix-loop-helix motif that is adjacent to the active site. A quaternary complex with NAD suggests a mode for ADP-ribosyltransferase inhibition. Interaction of C3 with RalA occurs at a unique interface formed by the switch-II region, helix alpha3 and the P loop of the GTPase. C3-binding stabilizes the GDP-bound conformation of RalA and blocks nucleotide release. Our data indicate that C. botulinum exoenzyme C3 is a single-domain toxin with bifunctional properties targeting Rho GTPases by ADP ribosylation and Ral by a guanine nucleotide dissociation inhibitor-like effect, which blocks nucleotide exchange.  相似文献   

4.
The C3stau2 exoenzyme from Staphylococcus aureus is a C3-like ADP-ribosyltransferase that ADP-ribosylates not only RhoA-C but also RhoE/Rnd3. In this study we have crystallized and determined the structure of C3stau2 in both its native form and in complex with NAD at 1.68- and 2.02-A resolutions, respectively. The topology of C3stau2 is similar to that of C3bot1 from Clostridium botulinum (with which it shares 35% amino acid sequence identity) with the addition of two extra helices after strand beta1. The native structure also features a novel orientation of the catalytic ARTT loop, which approximates the conformation seen for the "NAD bound" form of C3bot1. C3stau2 orients NAD similarly to C3bot1, and on binding NAD, C3stau2 undergoes a clasping motion and a rearrangement of the phosphate-nicotinamide binding loop, enclosing the NAD in the binding site. Comparison of these structures with those of C3bot1 and related toxins reveals a degree of divergence in the interactions with the adenine moiety among the ADP-ribosylating toxins that contrasts with the more conserved interactions with the nicotinamide. Comparison with C3bot1 gives some insight into the different protein substrate specificities of these enzymes.  相似文献   

5.
C3 exoenzyme is a mono-ADP-ribosyltransferase (ART) that catalyzes transfer of an ADP-ribose moiety from NAD+ to Rho GTPases. C3 has long been used to study the diverse regulatory functions of Rho GTPases. How C3 recognizes its substrate and how ADP-ribosylation proceeds are still poorly understood. Crystal structures of C3-RhoA complex reveal that C3 recognizes RhoA via the switch I, switch II, and interswitch regions. In C3-RhoA(GTP) and C3-RhoA(GDP), switch I and II adopt the GDP and GTP conformations, respectively, which explains why C3 can ADP-ribosylate both nucleotide forms. Based on structural information, we successfully changed Cdc42 to an active substrate with combined mutations in the C3-Rho GTPase interface. Moreover, the structure reflects the close relationship among Gln-183 in the QXE motif (C3), a modified Asn-41 residue (RhoA) and NC1 of NAD(H), which suggests that C3 is the prototype ART. These structures show directly for the first time that the ARTT loop is the key to target protein recognition, and they also serve to bridge the gaps among independent studies of Rho GTPases and C3.  相似文献   

6.
Several bacterial toxins are powerful and highly specific tools for studying basic mechanisms involved in cell biology. Whereas the clostridial neurotoxins are widely used by neurobiologists, many other toxins (i.e. toxins acting on small G-proteins or actin) are still overlooked. Botulinum neurotoxins (BoNT, serotypes A-G) and tetanus neurotoxin (TeNT), known under the generic term of clostridial neurotoxins, are characterized by their unique ability to selectively block neurotransmitter release. These proteins are formed of a light (Mr approximately 50) and a heavy (Mr approximately 100) chain which are disulfide linked. The cellular action of BoNT and TeNT involves several steps: heavy chain-mediated binding to the nerve ending membrane, endocytosis, and translocation of the light chain (their catalytic moiety) into the cytosol. The light chains each cleaves one of three, highly conserved, proteins (VAMP/synaptobrevin, syntaxin, and SNAP-25 also termed SNAREs) implicated in fusion of synaptic vesicles with plasma membrane at the release site. Hence, when these neurotoxins are applied extracellularly, they can be used as specific tools to inhibit evoked and spontaneous transmitter release from certain neurones whereas, when the membrane limiting steps are bypassed by the mean of intracellular applications, BoNTs orTeNT can be used to affect regulated secretion in various cell types. Several members of the Rho GTPase family have been involved in intracellular trafficking of synaptic vesicles and secretory organelles. As they are natural targets for several bacterial exoenzymes or cytotoxins, their role in neurotransmitter release can be probed by examining the action of these toxins on neurotransmission. Such toxins include: i) the non permeant C3 exoenzymes from C. botulinum or C. limosum which ADP-ribosylate and thereby inactivate Rho, ii) exoenzyme S from Pseudomonas aeruginosa which ADP-ribosylates different members of the Ras, Rab, Ral and Rap families, iii) toxin B from C. difficile which glucosylates Rho, Rac and CDC42, iv) lethal toxin from C. sordellii which glucosylates Rac, Ras and to a lesser extent, Rap and Ral, but not on Rho or CDC42, and v) CNF deamidases secreted by pathogenic strains of E. coli which activate Rho and, to a lesser extent, CDC42. Since these toxins or exoenzymes have no or little ability to enter into the neurones, they must be applied intraneuronally to bypass the membrane limiting steps. Injection of several of these toxins into Aplysia neurones allowed us to reveal a new role for Rac in the control of exocytosis. ADP-ribosylating enzymes, which specifically act on monomeric actin (C2 binary toxin from C. botulinum and iota toxin from C. perfringens), are potential tools to probe the role of actin filaments during secretion.  相似文献   

7.
Interaction of the Rho-ADP-ribosylating C3 exoenzyme with RalA   总被引:3,自引:0,他引:3  
RhoA, -B, and -C are ADP-ribosylated and biologically inactivated by Clostridium botulinum C3 exoenzyme and related C3-like transferases. We report that RalA GTPase, which is not ADP-ribosylated by C3, inhibits ADP-ribosylation of RhoA by C3 from C. botulinum (C3bot), Clostridium limosum (C3lim), and Bacillus cereus (C3cer) but not from Staphylococcus aureus (C3stau) in human platelet membranes and rat brain lysate. Inhibition by RalA occurs with the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound forms of RalA and is overcome by increasing concentrations of C3. A direct interaction of RalA with C3 was verified by precipitation of the transferase with GST-RalA-Sepharose. The affinity constant (K(d)) of the binding of RalA to C3lim was 12 nm as determined by fluorescence titration. RalA increased the NAD glycohydrolase activity of C3bot by about 5-fold. Although RalA had no effect on glucosylation of Rho GTPases by Clostridium difficile toxin B, C3bot and C3lim inhibited glucosylation of RalA by Clostridium sordellii lethal toxin. Furthermore, C3bot decreased activation of phospholipase D by RalA. The data indicate that several C3 exoenzymes directly interact with RalA without ADP-ribosylating the GTPase. The interaction is of high affinity and interferes with essential functions of C3 and RalA.  相似文献   

8.
Wilde C  Just I  Aktories K 《Biochemistry》2002,41(5):1539-1544
Exoenzyme C3stau2 from Staphylococcus aureus is a new member of the family of C3-like ADP-ribosyltransferases that ADP-ribosylates RhoA, -B, and -C. Additionally, it modifies RhoE and Rnd3. Here we report on studies of the structure-function relationship of recombinant C3stau2 by site-directed mutagenesis. Exchange of Glu(180) with leucine caused a complete loss of both ADP-ribosyltransferase and NAD glycohydrolase activity. By contrast, exchange of the glutamine residue two positions upstream (Gln(178)) with lysine blocked ADP-ribosyltransferase activity without major changes in NAD glycohydrolase activity. NAD and substrate binding of this mutant protein was comparable to that of the recombinant wild type. Exchange of amino acid Tyr(175), which is part of the recently described "ADP-ribosylating toxin turn-turn" (ARTT) motif [Han, S., Arvai, A. S., Clancy, S. B., and Tainer, J. A. (2001) J. Mol.Biol. 305, 95-107], with alanine, lysine, or threonine caused a loss of or a decrease in ADP-ribosyltransferase activity but an increase in NAD glycohydrolase activity. Recombinant C3stau2 Tyr175Ala and Tyr175Lys were not precipitated by matrix-bound Rho, supporting a role of Tyr(175) in protein substrate recognition. Exchange of Arg(48) and/or Arg(85) resulted in a 100-fold reduced transferase activity, while the recombinant C3stau2 double mutant R48K/R85K was totally inactive. The data indicate that amino acid residues Arg(48), Arg(85), Tyr(175), Gln(178), and Glu(180) are essential for ADP-ribosyltransferase activity of recombinant C3stau2 and support the role of the ARTT motif in substrate recognition of RhoA by C3-like ADP-ribosyltransferases.  相似文献   

9.
Transmigration of monocytes to the subendothelial space is the initial step of atherosclerotic plaque formation and inflammation. Integrin activation and chemotaxis are two important functions involved in monocyte transmigration. To delineate the signaling cascades leading to integrin activation and chemotaxis by monocyte chemoattractant protein-1 (MCP-1), we have investigated the roles of MAPK and Rho GTPases in THP-1 cells, a monocytic cell line. MCP-1 stimulated beta1 integrin-dependent, but not beta2 integrin-dependent cell adhesion in a time-dependent manner. MCP-1-mediated cell adhesion was inhibited by a MEK inhibitor but not by a p38-MAPK inhibitor. In contrast, MCP-1-mediated chemotaxis was inhibited by the p38-MAPK inhibitor but not by the MEK inhibitor. The inhibitor of Rho GTPase, C3 exoenzyme, and a Rho kinase inhibitor abrogated MCP-1-dependent chemotaxis but not integrin-dependent cell adhesion. Further, C3 exoenzyme and the Rho kinase inhibitor blocked MCP-1-dependent p38-MAPK activation. These data indicate that ERK is responsible for integrin activation, that p38-MAPK and Rho are responsible for chemotaxis mediated by MCP-1, and that Rho and the Rho kinase are upstream of p38-MAPK in MCP-1-mediated signaling. This study demonstrates that two distinct MAPKs regulate two dependent signaling cascades leading to integrin activation and chemotaxis induced by MCP-1 in THP-1 cells.  相似文献   

10.
Rho-modifying C3-like ADP-ribosyltransferases   总被引:2,自引:0,他引:2  
C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.  相似文献   

11.
Activation of phospholipase D1 by ADP-ribosylated RhoA   总被引:1,自引:0,他引:1  
Clostridium botulinum exoenzyme C3 exclusively ADP-ribosylates RhoA, B, and C to inactivate them, resulting in disaggregation of the actin filaments in intact cells. The ADP-ribose resides at Asn-41 in the effector binding region, leading to the notion that ADP-ribosylation inactivates Rho by blocking coupling of Rho to its downstream effectors. In a recombinant system, however, ADP-ribosylated Rho bound to effector proteins such as phospholipase D-1 (PLD1), Rho-kinase (ROK), and rhotekin. The ADP-ribose rather mediated binding of Rho-GDP to PLD1. ADP-ribosylation of Rho-GDP followed by GTP-gamma-S loading resulted in binding but not in PLD activation. On the other hand, ADP-ribosylation of Rho previously activated by binding to GTP-gamma-S resulted in full PLD activation. This finding indicates that ADP-ribosylation seems to prevent GTP-induced change to the active conformation of switch I, the prerequisite of Rho-PLD interaction. In contrast to recombinant systems, ADP-ribosylation in intact cells results in functional inactivation of Rho, indicating other mechanisms of inactivation than blocking effector coupling.  相似文献   

12.
Our previous work showed that post-translationally modified Rho in its GTP-bound state stimulated phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity in mouse fibroblast lysates. To investigate whether Rho physically interacts with PIP5K, we incubated immobilized Rho-GST with Swiss 3T3 cell lysates and tested for retained PIP5K activity. Rho-GST, but not Ras-GST or GST alone, bound significant PIP5K activity. The binding of PIP5K was independent of whether Rho was in a GTP- or GDP-bound state. An antibody against a 68-kDa human erythrocyte type I PIP5K recognized a single 68-kDa protein eluted from Rho-GST column. The Rho-associated PIP5K responded to phosphatidic acid differentially from the erythrocyte type I PIP5K, suggesting that it could be a distinct isoform not reported previously. Rho co-immunoprecipitated with the 68-kDa PIP5K from Swiss 3T3 lysates, demonstrating that endogenous Rho also interacts with PIP5K. ADP-ribosylation of Rho with C3 exoenzyme enhanced PIP5K binding by approximately eightfold, consistent with the ADP-ribosylated Rho functioning as a dominant negative inhibitor. These results demonstrate that Rho physically interacts with a 68-kDa PIP5K, although whether the association is direct or indirect is unknown.  相似文献   

13.
The susceptibility of various lines of cultured cells to botulinum ADP-ribosyltransferase, known as C3 exoenzyme, was examined. Human neuroblastoma GOTO cells were most sensitive. The C3 exoenzyme caused a change in cell shape that involved extension of neurites. The exoenzyme evoked the outgrowth of neurites from chick ganglion as effectively as nerve growth factor, suggesting that C3 exoenzyme possesses neurotropic activity. Experiments with125I-labeled enzyme revealed that C3 exoenzyme was rapidly incorporated into cells but the number of incorporated enzyme molecules was small. Once C3 exoenzyme had been incorporated, ADP-ribosylation of the substrate (Rho protein) in GOTO cells occurred immediately and rapidly reached a maximum level. However, some of Rho proteins remained unmodified even after induction of the change in morphology. These findings suggest that ADP-ribosylation by C3 exoenzyme is directly associated with the differentiation of GOTO cells but that other events may also participate in this process.  相似文献   

14.
The novel C3-like ADP-ribosyltransferase is produced by a Staphylococcus aureus strain that especially ADP-ribosylates RhoE/Rnd3 subtype proteins, and its three-dimensional (3D) structure has not known. In order to understand the catalytic mechanism, the 3D structure of the protein is built by using homology modeling based on the known crystal structure of exoenzyme C3 from Clostridium botulinum (1G24). Then the model structure is further refined by energy minimization and molecular dynamics methods. The putative nicotinamide adenine dinucleotide (NAD(+))-binding pocket of exoenzyme C3(Stau) is determined by Binding-Site Search module. The NAD(+)-enzyme complex is developed by molecular dynamics simulation and the key residues involved in the combination of enzyme binding to the ligand-NAD(+) are determined, which is helpful to guide the experimental realization and the new mutant designs as well. Our results indicated that the key binding-site residues of Arg48, Glu180, Ser138, Asn134, Arg85, and Gln179 play an important role in the catalysis of exoenzyme C3(Stau), which is in consistent with experimental observation.  相似文献   

15.
Melanosomes synthesized within melanocytes are transferred to keratinocytes through dendrites, resulting in a constant supply of melanin to the epidermis, and this process determines skin pigmentation. During screening for inhibitors of melanosome transfer, we found a novel reagent, centaureidin, that induces significant morphological changes in normal human epidermal melanocytes and inhibits melanocyte dendrite elongation, resulting in a reduction of melanosome transfer in an in vitro melanocyte-keratinocyte co-culture system. Since members of the Rho family of small GTP-binding proteins act as master regulators of dendrite formation, and activated Rho promotes dendrite retraction, we studied the effects of centaureidin on the small GTPases. In in vitro binding assay, centaureidin activated Rho and furthermore, a Rho inhibitor (C. botulinum C3 exoenzyme), a Rho kinase inhibitor (Y27632) and a small GTPase inhibitor (Toxin B) blocked dendrite retraction induced by centaureidin. These results suggest centaureidin could act via the Rho signaling pathway, and it may directly or indirectly activate Rho. Thus, centaureidin appears to inhibit dendrite outgrowth from melanocytes by activating Rho, resulting in the inhibition of melanosome transfer from melanocytes to keratinocytes.  相似文献   

16.
Angiotensin II (Ang II) evokes a variety of hypertrophic responses such as activation of protein kinases, reprogramming of gene expressions and an increase in protein synthesis in cardiac myocytes. In this study, we examined the role of Rho family small GTP binding proteins (G proteins) in Ang II-induced cardiac hypertrophy. Ang II strongly activated extracellular signal-regulated protein kinases (ERKs) in cardiac myocytes of neonatal rats. Although Ang II-induced activation of ERKs was completely suppressed by an Ang II type 1 receptor antagonist, CV-11974, this activation was not inhibited by the pretreatment with C3 exoenzyme, which abrogates Rho functions. Overexpression of Rho GDP dissociation inhibitor (Rho-GDI), dominant negative mutants of Rac1 (D.N.Rac1), or D.N.Cdc42 had no effects on Ang II-induced activation of transfected ERK2. The promoter activity of skeletal a-actin and c-fos genes was increased by Ang II, and the increase was partly inhibited by overexpression of Rho-GDI and the pretreatment with C3 exoenzyme. Ang II increased phenylalanine incorporation into cardiac myocytes by approximately 1.4 fold as compared with control, and this increase was also significantly suppressed by the pretreatment with C3 exoenzyme. These results suggest that the Rho family small G proteins play important roles in Ang II-induced hypertrophic responses in cardiac myocytes.  相似文献   

17.
The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632-induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632-induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK.  相似文献   

18.
Clostridium botulinum exoenzyme C3 is responsible for the inactivation of members of the Rho GTPase family that are implicated in actin-cytoskeleton reorganization. This property has been extensively used in the field to investigate the functionality of the Rho GTPases. However, systematic analysis of Rho GTPase functions requires large amounts of such inhibitors and consequently an optimization of the production yield of these proteins. Bacterial production of soluble proteins often requires a refolding step that noticeably affects the production yields and necessitates additional experiments to verify functional activity. This is particularly true for TAT-C3, the production yields of which are generally low. In this report, we describe a rapid and efficient method for the production of soluble C3 exoenzyme developed by screening a collection of bacterial strains. The recombinant C3 protein was fused to the TAT protein-transduction domain from HIV, to allow protein delivery into cells, and to a hexahistidine tag, that permitted purification by Nickel affinity chromatography. We have demonstrated the production of large amounts of soluble and functional protein using the bacterial strain AD494 (DE3)pLysS. This rapid and efficient method for the production of soluble C3 exoenzyme could also be useful for the production of other proteins with solubility problems.  相似文献   

19.
RhoA, -B, and -C are ADP-ribosylated by Clostridium botulinum exoenzyme C3 to induce redistribution of the actin filaments in intact cells, a finding that has led to the notion that the ADP-ribosylation blocks coupling of Rho to the downstream effectors. ADP-ribosylation, however, does not alter nucleotide binding, intrinsic, and GTPase-activating protein-stimulated GTPase activity. ADP-ribosylated Rho is even capable of activating the effector protein ROK in a recombinant system. Treatment of cells with a cell-permeable chimeric C3 toxin led to complete localization of modified Rho to the cytosolic fraction based on the complexation of ADP-ribosylated Rho with the guanine-nucleotide dissociation inhibitor-1 (GDI-1). The modified complex turned out to be resistant to phosphatidylinositol 4,5-bisphosphate- and GTPgammaS-induced release of Rho from GDI-1. Thus, ADP-ribosylation leads to entrapment of Rho in the GDI-1 complex. The increased stability of the GDI complex prevented binding of Rho to membrane-associated players of the GTPase cycle such as the activating guanine nucleotide exchange factors and effector proteins.  相似文献   

20.
C3-like ADP-ribosyltransferases represent an expanding family of related exoenzymes, which are produced by Clostridia and various Staphylococcus aureus strains. Here we report on the cloning and biochemical characterization of an ADP-ribosyltransferase from Bacillus cereus strain 2339. The transferase encompasses 219 amino acids; it has a predicted mass of 25.2 kDa and a theoretical isoelectric point of 9.3. To indicate the relationship to the family of C3-like ADP-ribosyltransferases, we termed the enzyme C3cer. The amino acid sequence of C3cer is 30 to 40% identical to other C3-like exoenzymes. By site-directed mutagenesis, Arg(59), Arg(97), Tyr(151), Arg(155), Thr(178), Tyr(180), Gln(183), and Glu(185) of recombinant C3cer were identified as pivotal residues of enzyme activity and/or protein substrate recognition. Precipitation experiments with immobilized RhoA revealed that C3cerTyr(180), which is located in the so-called "ADP-ribosylating toxin turn-turn" (ARTT) motif, plays a major role in the recognition of RhoA. Like other C3-like exoenzymes, C3cer ADP-ribosylates preferentially RhoA and RhoB and to a much lesser extent RhoC. Because the cellular accessibility of recombinant C3cer is low, a fusion toxin (C2IN-C3cer), consisting of the N-terminal 225 amino acid residues of the enzyme component of C2 toxin from Clostridium botulinum and C3cer was used to study the cytotoxic effects of the transferase. This fusion toxin caused rounding up of Vero cells comparable to the effects of Rho-inactivating toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号