首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mucolipin-3 (MCOLN3) is a pH-regulated Ca(2+) channel that localizes to the endosomal pathway. Gain-of-function mutation in MCOLN3 causes the varitint-waddler (Va) phenotype in mice, which is characterized by hearing loss, vestibular dysfunction, and coat color dilution. The Va phenotype results from a punctual mutation (A419P) in the pore region of MCOLN3 that locks the channel in an open conformation causing massive entry of Ca(2+) inside cells and inducing cell death by apoptosis. Overexpression of wild-type MCOLN3 produces severe alterations of the endosomal pathway, including enlargement and clustering of endosomes, delayed EGF receptor degradation, and impaired autophagosome maturation, thus suggesting that MCOLN3 plays an important role in the regulation of endosomal function. To understand better the physiological role of MCOLN3, we inhibited MCOLN3 function by expression of a channel-dead dominant negative mutant (458DD/KK) or by knockdown of endogenous MCOLN3. Remarkably, we found that impairment of MCOLN3 activity caused a significant accumulation of luminal Ca(2+) in endosomes. This accumulation led to severe defects in endosomal acidification as well as to increased endosomal fusion. Our findings reveal a prominent role for MCOLN3 in regulating Ca(2+) homeostasis at the endosomal pathway and confirm the importance of luminal Ca(2+) for proper acidification and membrane fusion.  相似文献   

2.
    
  1. Download : Download high-res image (259KB)
  2. Download : Download full-size image
  相似文献   

3.
    
TRPML3 is an inward rectifying Ca2+ channel that is regulated by extracytosolic H+. Although gain-of-function mutation in TRPML3 causes the varitint-waddler phenotype, the role of TRPML3 in cellular physiology is not known. In this study, we report that TRPML3 is a prominent regulator of endocytosis, membrane trafficking and autophagy. Gradient fractionation and confocal localization reveal that TRPML3 is expressed in the plasma membrane and multiple intracellular compartments. However, expression of TRPML3 is dynamic, with accumulation of TRPML3 in the plasma membrane upon inhibition of endocytosis, and recruitment of TRPML3 to autophagosomes upon induction of autophagy. Accordingly, overexpression of TRPML3 leads to reduced constitutive and regulated endocytosis, increased autophagy and marked exacerbation of autophagy evoked by various cell stressors with nearly complete recruitment of TRPML3 into the autophagosomes. Importantly, both knockdown of TRPML3 by siRNA and expression of the channel-dead dominant negative TRPML3(D458K) have a reciprocal effect, reducing endocytosis and autophagy. These findings reveal a prominent role for TRPML3 in regulating endocytosis, membrane trafficking and autophagy, perhaps by controlling the Ca2+ in the vicinity of cellular organelles that is necessary to regulate these cellular events.  相似文献   

4.
Abstract Most brewing strains of Saccharomyces cerevisiae flocculate following growth in beer wort. However, many do not flocculate in laboratory culture media, because their initial pH and buffering capacity do not correspond to the pH range within which these yeasts flocculate. Many, though not all, NewFlo phenotype brewing yeasts flocculate within a narrow pH range only; this is indicative of the existence of more than one NewFlo flocculation phenotype. Such strains may be flocculated by small alterations of pH to within the flocculation range. Induction of flocculation by pH change may be used to separate cells from media at any stage during fermentation.  相似文献   

5.
Proton-proton Overhauser effects were observed in 1H2O solutions of sperm whale metcyano myoglobin. Dipolar connectivities involving hyperfine-shifted exchangeable protons such as the proximal and distal histidine ring NH's allowed us to categorize signals as arising from residues located on one side of the heme plane or on the other. With these connectivities, as well as spin-lattice relaxation times, spectral assignments were reached that were used to derive structural and dynamic information about the heme environment. Thus, it was shown that the distal histidine residue does not titrate down to pH 4.1 and that the CH2 of the proximal histidine side chain tumbles with the same correlation time as the protein. Some other applications and limitations are presented.  相似文献   

6.
    
Lysosomes are dynamic organelles that undergo cycles of fusion and fission with themselves and with other organelles. Following fusion with late endosomes to form hybrid organelles, lysosomes are reformed as discrete organelles. This lysosome reformation or formation is a poorly understood process that has not been systematically analyzed and that lacks known regulators. In this study, we quantitatively define the multiple steps of lysosome formation and identify the first regulator of this process.   相似文献   

7.
8.
    
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

9.
    
Autophagy is an evolutionarily conserved pathway that is required for cellular homeostasis, growth and survival. In a recent study, Scotto-Rosato et al. demonstrate that TRPML1-mediated calcium release promotes autophagosome biogenesis by activating the CaMKKβ/VPS34 pathway, providing a new insight into the pathophysiological role of TRPML1 in human diseases.  相似文献   

10.
         下载免费PDF全文
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells’ functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re‐expression of TRPML1 in neurons. These features were not observed in Niemann–Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.  相似文献   

11.
TRPML3 is a Ca2+ permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GST pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca2+ in the fusion process.  相似文献   

12.
The P2X7 receptor is a non-selective cationic channel activated by extracellular ATP, belonging to the P2X receptor family. To assess the role of extracellular histidines on the allosteric modulation of the rat P2X7 receptor by divalent metals (copper, zinc and magnesium) and protons, these amino acid residues were singly substituted for corresponding alanines. Wild-type and mutated receptors were injected to Xenopus laevis oocytes; metal-related effects were evaluated by the two-electrode voltage-clamp technique. Copper inhibited the ATP-gated currents with a median inhibitory concentration of 4.4 +/- 1.0 micromol/L. The inhibition was non-competitive and time-dependent; copper was 60-fold more potent than zinc. The mutant H267A, resulted in a copper resistant receptor; mutants H201A and H130A were less sensitive to copper inhibition (p < 0.05). The rest of the mutants examined, H62A, H85A, and H219A, conserved the copper-induced inhibition. Only mutants H267A and H219A were less sensitive to the modulator action of zinc. Moreover, the magnesium-induced inhibition was abolished exclusively on the H130A and H201A mutants, suggesting that this metal may act at a novel cationic modulator site. Media acidification inhibited the ATP-gated current 87 +/- 3%; out of the six mutants examined, only H130A was significantly less sensitive to the change in pH, suggesting that His-130 could be involved as a pH sensor. In conclusion, while His-267 is critically involved in the copper or zinc allosteric modulation, the magnesium inhibitory effects is related to His-130 and His-201, His-130 is involved in proton sensing, highlighting the role of defined extracellular histidines in rat P2X7 receptor allosteric modulation.  相似文献   

13.
    
The seven members of the TRP channel superfamily are divided into two main groups with five members comprising group I (TRPC/V/M/N/A) and TRPML (TRP MucoLipin) and TRPP (TRP Polycystin) making up group II. Group II channels share a high sequence homology on their transmembrane domains and are distinct from group I members as they contain a large luminal/extracellular domain between transmembrane helix 1 (S1) and S2. Since 2016, there are more than ten research papers reporting various structures of group II channels by either cryo-EM or X-ray crystallography. These studies along with recent functional analysis by the other groups have considerably strengthened our knowledge on TRPML and TRPP channels. In this review, we summarize and discuss these reports providing molecular insights into the group II TRP channel family.  相似文献   

14.
15.
Recent evidence has indicated that the lysosome is able to act as a signaling organelle that senses nutrient availability and generates an adaptive response that is important for cellular homeostasis. We recently discovered another example of lysosomal signaling where lysosomal calcium release activates the master autophagy regulator TFEB via the phosphatase calcineurin.  相似文献   

16.
TRPML3 is a H+-regulated Ca2+ channel that shuttles between intracellular compartments and the plasma membrane. The A419P mutation causes the varitint-waddler phenotype as a result of gain-of-function (GOF). The mechanism by which A419P leads to GOF is not known. Here, we show that the TRPML3 pore is dynamic when conducting Ca2+ to change its conductance and permeability, which appears to be mediated by trapping Ca2+ within the pore. The pore properties can be restored by strong depolarization or by conducting Na+ through the pore. The A419P mutation results in expanded channel pore with altered permeability that limits modulation of the pore by Ca2+. This effect is specific for the A419P mutation and is not reproduced by other GOF mutations, including A419G, H283A, and proline mutations in the fifth transmembrane domain. These findings describe a novel mode of a transient receptor potential channel behavior and suggest that pore expansion by the A419P mutation may contribute to the varitint-waddler phenotype.  相似文献   

17.
    
Lysosomal Ca2+ release channel TRPML1 has been suggested to regulate lysosome size by activating calmodulin (CaM). To further understand how TRPML1 and CaM regulate lysosome size, in this study, we report that inhibiting mTORC1 causes enlarged lysosomes, and the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. We also show that lysosome vacuolation induced by inhibiting TRPML1 is corrected by mTORC1 upregulation, and the facilitating effect of TRPML1 on the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. In the meantime, lysosome vacuolation induced by inhibiting CaM is corrected by mTORC1 upregulation, and mTORC1 overexpression corrects the inhibitory effect of CaM antagonist on the recovery of enlarged lysosomes. Conversely, the vacuolation induced by suppressing mTORC1 is not corrected by upregulating CaM. These data suggest that mTORC1 functions downstream of TRPML1 and CaM to regulate lysosome size. Together with our recent finding showing that TRPML1, CaM and mTORC1 form a macromolecular complex to control mTORC1 activity, we suggest that TRPML1 and CaM control lysosome fission through regulating mTORC1, identifying an mTORC1-dependent molecular mechanism for lysosomal membrane fission.  相似文献   

18.
Summary The loop diuretic bumetanide binds specifically to the Na/K/2Cl cotransporter of many cell types including duck erythrocytes. Membranes isolated from these erythrocytes retain the ability to bind bumetanide when cells are exposed to cotransport activity stimuli prior to membrane isolation. An extensive study of the effects of ions on specific [3H]bumetanide binding to such membranes is presented here and compared to the activity of these ions in supporting transport function in intact cells. Both Na+ and K+ enhanced bumetanide binding in a saturable manner consistent with a single-site interaction. The K m for each ion was dependent on the concentration of the other cation suggesting heterotropic cooperative interactions between the Na+ and K+ binding sites. Na+ and K+ were partially replaceable, with the selectivity of the Na+ site being Na+ > Li+ > NH 4 + ; N-methyl-d-glucamine+, choline+ and tetramethylammonium+ also supported a small amount of specific binding when substituted for Na+. The selectivity of the K+ site was K+ Rb+ > NH 4 + > Cs+; N-methyl-d-glucamine+, choline+ and tetramethylammonium+ were inactive at this site. The results of transport experiments revealed a slightly different pattern. Li+ could partially substitute for Na+ in supporting coteansport, but other monovalent cations were completely inactive. The order of potency at the K+ site was NH 4 + > K+ Rb+ > Cs+ other monovalent cations. The effect of Cl- on bumetanide binding was biphasic, being stimulatory at low [Cl-] but inhibitory at high [Cl-]. As this implies the existence of two Cl- binding sites (termed Cl H and Cl L for the high- and low- affinity sites, respectively) each phase was examined individually. Cl- binding to Cl H could be described by a rectangular hyperbola with a K m of 2.5 mm, while kinetic analysis of the inhibition of bumetanide binding at high [Cl-] revealed that it was of a noncompetitive type (K i = 112.9 mm). The selectivity of anion binding to the two sites was distinct. Cl H was highly selective with Cl- > SCN- > Br-; F-, NO 3 - , ClO 4 - , MeSO 4 - , gluconate- and SO 4 2- were inactive. The efficacy of anion inhibition of binding to Cl L was ClO 4 - > I- > SCN- > NO3 > Cl-; F-, MeSO 4 - , gluconate-, and SO 4 2- were inactive. Thus, Cl H is much more selective than Cl L and largely accounts for the specificity of the system with respect to anion transport. SO 4 - , NO 3 - , I-, SCN- and ClO 4 - did not support cotransport when bound to Cl L and the latter three anions were inhibitory. Mg2+ was found to stimulate binding at a narrowly defined peak around 1.5 mm, but was inhibitory at higher concentrations. Other divalent cations caused a similar inhibition of bumetanide binding but did not exert a stimulatory effect at 1.5 mm. Divalent cations have little effect on cotransport in intact cells at concentrations up to 20 mm, suggesting that their effects on diuretic binding reflect interactions at internally disposed sites. Bumetanide binding was optimal at a pH of 7.8–8.1 and declined sharply as the pH was lowered towards 6. The titration curve correlated well with the effect of pH on cotransport in intact cells; the inhibitory effect of low pH suggests that protonation of the cotransporter may inhibit its function.We thank Drs. Brad Pewitt, John Westley and Mrinalini Rao for discussion, Sara Leung and Artelia Watson for their excellent technical assistance, and Dr. R.J. Turner for his gift of [3H] bumetanide. This work was supported in part by Cystic Fibrosis Center grant #CF RO11 7-04.  相似文献   

19.
    
Recent mutagenic and molecular modelling studies suggested a role for glycine 84 in the putative oxyanion loop of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. A 114 times decrease of the esterase catalytic activity of the G84S mutant was observed, without changes in the thermal stability. The recently solved three-dimensional (3D) structure of EST2 in complex with a HEPES molecule permitted to demonstrate that G84 (together with G83 and A156) is involved in the stabilization of the oxyanion through a hydrogen bond from its main chain NH group. The structural data in this case did not allowed us to rationalize the effect of the mutation, since this hydrogen bond was predicted to be unaltered in the mutant. Since the mutation could shed light on the role of the oxyanion loop in the HSL family, experiments to elucidate at the mechanistic level the reasons of the observed drop in k (cat) were devised. In this work, the kinetic and structural features of the G84S mutant were investigated in more detail. The optimal temperature and pH for the activity of the mutated enzyme were found significantly changed (T = 65 degrees C and pH = 5.75). The catalytic constants K (M) and V(max) were found considerably altered in the mutant, with ninefold increased K (M) and 14-fold decreased V(max), at pH 5.75. At pH 7.1, the decrease in k (cat) was much more dramatic. The measurement of kinetic constants for some steps of the reaction mechanism and the resolution of the mutant 3D structure provided evidences that the observed effects were partly due to the steric hindrance of the S84-OH group towards the ester substrate and partly to its interference with the nucleophilic attack of a water molecule on the second tetrahedral intermediate.  相似文献   

20.
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH (pHi) by removing a single intracellular proton in exchange for one extracellular sodium ion. It is involved in cardiac hypertrophy and ischemia reperfusion damage to the heart and elevation of its activity is a trigger for breast cancer metastasis. NHE1 has an extensive 500 amino acid N-terminal membrane domain that mediates transport and consists of 12 transmembrane segments connected by intracellular and extracellular loops. Intracellular loops are hypothesized to modulate the sensitivity to pHi. In this study, we characterized the structure and function of intracellular loop 5 (IL5), specifically amino acids 431–443. Mutation of eleven residues to alanine caused partial or nearly complete inhibition of transport; notably, mutation of residues L432, T433, I436, N437, R440 and K443 demonstrated these residues had critical roles in NHE1 function independent of effects on targeting or expression. The nuclear magnetic resonance (NMR) solution spectra of the IL5 peptide in a membrane mimetic sodium dodecyl sulfate solution revealed that IL5 has a stable three-dimensional structure with substantial alpha helical character. NMR chemical shifts indicated that K438 was in close proximity with W434. Overall, our results show that IL5 is a critical, intracellular loop with a propensity to form an alpha helix, and many residues of this intracellular loop are critical to proton sensing and ion transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号