首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antizyme (Az) is a highly conserved key regulatory protein bearing a major role in regulating polyamine levels in the cell. It has the ability to bind and inhibit ornithine decarboxylase (ODC), targeting it for degradation. Az inhibitor (AzI) impairs the activity of Az. In this study, we mapped the binding sites of ODC and AzI on Az using Ala scan mutagenesis and generated models of the two complexes by constrained computational docking. In order to scan a large number of mutants in a short time, we developed a workflow combining high-throughput mutagenesis, small-scale parallel partial purification of His-tagged proteins and their immobilization on a tris-nitrilotriacetic-acid-coated surface plasmon resonance chip. This combination of techniques resulted in a significant reduction in time for production and measurement of large numbers of mutant proteins. The data-driven docking results suggest that both proteins occupy the same binding site on Az, with Az binding within a large groove in AzI and ODC. However, single-mutant data provide information concerning the location of the binding sites only, not on their relative orientations. Therefore, we generated a large number of double-mutant cycles between residues on Az and ODC and used the resulting interaction energies to restrict docking. The model of the complex is well defined and accounts for the mutant data generated here, and previously determined biochemical data for this system. Insights on the structure and function of the complexes, as well as general aspects of the method, are discussed.  相似文献   

2.
Ornithine decarboxylase (ODC) is the most notable example of a protein degraded by the 26 S proteasome without ubiquitination. Instead, ODC is targeted to degradation by direct binding to a polyamine-induced protein termed antizyme (Az). Antizyme inhibitor (AzI) is an ODC-related protein that does not retain enzymatic activity yet binds Az with higher affinity than ODC. We show here that like ODC, AzI is also a short-lived protein that undergoes proteasomal degradation. However, in contrast to ODC degradation, the degradation of AzI is ubiquitin-dependent and does not require interaction with Az. Moreover, Az binding actually stabilizes AzI by inhibiting its ubiquitination. Substituting the C terminus of AzI with that of ODC, which together with Az constitutes the complete degradation signal of ODC, does not subvert AzI degradation from the ubiquitin-dependent mode to the Az-dependent mode, suggesting dominance of the ubiquitination signal. Our results suggest opposing roles of Az in regulating the degradation of AzI and ODC.  相似文献   

3.
ODC (ornithine decarboxylase), the first enzyme in the polyamine biosynthesis pathway in mammalian cells, is a labile protein. ODC degradation is stimulated by Az (antizyme), a polyamine-induced protein, which in turn is regulated by an ODC-related protein termed AzI (Az inhibitor). Recently, another ODCp (ODC paralogue) was suggested to function as AzI, on the basis of its ability to increase ODC activity and inhibit Az-stimulated ODC degradation in vitro. We show in the present study that ODCp is indeed capable of negating Az functions, as reflected by its ability to increase ODC activity and polyamine uptake and by its ability to provide growth advantage in stably transfected cells. However, ODCp is less potent than AzI1 in stimulating ODC activity, polyamine uptake and growth rate. The superiority of AzI1 to ODCp in inhibiting the Az-stimulated ODC degradation is also demonstrated using an in vitro degradation assay. We show that the basis for the inferiority of ODCp as an AzI is its lower affinity towards Az (Az1 and Az3). Further, we show here that ODCp, like AzI, is degraded in a ubiquitin-dependent manner, in a reaction that does not require either interaction with Az or the integrity of its C-terminus. Interaction with Az actually stabilizes ODCp by interfering with its ubiquitination. This results in sequestration of Az into a stable complex with ODCp, which is the central feature contributing to the ability of ODCp to function as AzI.  相似文献   

4.
Hsieh JY  Yang JY  Lin CL  Liu GY  Hung HC 《PloS one》2011,6(9):e24366
Antizyme (AZ) is a protein with 228 amino acid residues that regulates ornithine decarboxylase (ODC) by binding to ODC and dissociating its homodimer, thus inhibiting its enzyme activity. Antizyme inhibitor (AZI) is homologous to ODC, but has a higher affinity than ODC for AZ. In this study, we quantified the biomolecular interactions between AZ and ODC as well as AZ and AZI to identify functional AZ peptides that could bind to ODC and AZI and inhibit their function as efficiently as the full-length AZ protein. For these AZ peptides, the inhibitory ability of AZ_95-228 was similar to that of AZ_WT. Furthermore, AZ_95-176 displayed an inhibition (IC(50): 0.20 μM) similar to that of AZ-95-228 (IC(50): 0.16 μM), even though a large segment spanning residues 177-228 was deleted. However, further deletion of AZ_95-176 from either the N-terminus or the C-terminus decreased its ability to inhibit ODC. The AZ_100-176 and AZ_95-169 peptides displayed a noteworthy decrease in ability to inhibit ODC, with IC(50) values of 0.43 and 0.37 μM, respectively. The AZ_95-228, AZ_100-228 and AZ_95-176 peptides had IC(50) values comparable to that of AZ_WT and formed AZ-ODC complexes with K(d,AZ-ODC) values of 1.5, 5.3 and 5.6 μM, respectively. Importantly, our data also indicate that AZI can rescue AZ peptide-inhibited ODC enzyme activity and that it can bind to AZ peptides with a higher affinity than ODC. Together, these data suggest that these truncated AZ proteins retain their AZI-binding ability. Thus, we suggest that AZ_95-176 is the minimal AZ peptide that is fully functioning in the binding of ODC and AZI and inhibition of their function.  相似文献   

5.
Ste11, a homologue of mammalian MAPKKKs, together with its binding partner Ste50 works in a number of MAPK signaling pathways of Saccharomyces cerevisiae. Ste11/Ste50 binding is mediated by their sterile alpha motifs or SAM domains, of which homologues are also found in many other intracellular signaling and regulatory proteins. Here, we present the solution structure of the SAM domain or residues D37-R104 of Ste11 and its interactions with the cognate SAM domain-containing region of Ste50, residues M27-Q131. NMR pulse-field-gradient (PFG) and rotational correlation time measurements (tauc) establish that the Ste11 SAM domain exists predominantly as a symmetric dimer in solution. The solution structure of the dimeric Ste11 SAM domain consists of five well-defined helices per monomer packed into a compact globular structure. The dimeric structure of the SAM domain is maintained by a novel dimer interface involving interactions between a number of hydrophobic residues situated on helix 4 and at the beginning of the C-terminal long helix (helix 5). The dimer structure may also be stabilized by potential salt bridge interactions across the interface. NMR H/2H exchange experiments showed that binding of the Ste50 SAM to the Ste11 SAM very likely involves the positively charged extreme C-terminal region as well as exposed hydrophobic patches of the dimeric Ste11 SAM domain. The dimeric structure of the Ste11 SAM and its interactions with the Ste50 SAM may have important roles in the regulation and activation of the Ste11 kinase and signal transmission and amplifications through the Ste50-Ste11 complex.  相似文献   

6.
Interleukin-8 (IL-8), a member of the chemokine superfamily, exists as both monomers and dimers, and mediates its function by binding to neutrophil CXCR1 and CXCR2 receptors that belong to the G protein-coupled receptor class. It is now well established that the monomer functions as a high-affinity ligand, but the binding affinity of the dimer remains controversial. The approximately 1000-fold difference between monomer-dimer equilibrium constant (microM) and receptor binding constant (nM) of IL-8 does not allow receptor-binding affinity measurements of the native IL-8 dimer. In this study, we overcame this roadblock by creating a "trapped" nondissociating dimer that contains a disulfide bond across the dimer interface at the 2-fold symmetry point. The NMR studies show that the structure of this trapped dimer is indistinguishable from the native dimer. The trapped dimer, compared to a trapped monomer, bound CXCR1 with approximately 70-fold and CXCR2 with approximately 20-fold lower affinities. Receptor binding involves two interactions, between the IL-8 N-loop and receptor N-domain residues, and between IL-8 N-terminal and receptor extracellular loop residues. In contrast to a trapped monomer that bound an isolated CXCR1 N-domain peptide with microM affinity, the trapped dimer failed to show any binding, indicating that dimerization predominantly perturbs the binding of only the N-loop residues. These results demonstrate that only the monomer is a high-affinity ligand for both receptors, and also provide a structural basis for the lower binding affinity of the dimer.  相似文献   

7.
Ornithine decarboxylase (ODC) is a pyridoxal 5'-phosphate (PLP) dependent homodimeric enzyme. It is a recognized drug target against African sleeping sickness, caused by Trypanosoma brucei. One of the currently used drugs, alpha-difluoromethylornithine (DFMO), is a suicide inhibitor of ODC. The structure of the T. brucei ODC (TbODC) mutant K69A bound to DFMO has been determined by X-ray crystallography to 2.0 A resolution. The protein crystallizes in the space group P2(1) (a = 66.8 A, b = 154.5 A, c = 77.1 A, beta = 90.58 degrees ), with two dimers per asymmetric unit. The initial phasing was done by molecular replacement with the mouse ODC structure. The structure of wild-type uncomplexed TbODC was also determined to 2.9 A resolution by molecular replacement using the TbODC DFMO-bound structure as the search model. The N-terminal domain of ODC is a beta/alpha-barrel, and the C-terminal domain of ODC is a modified Greek key beta-barrel. In comparison to structurally related alanine racemase, the two domains are rotated 27 degrees relative to each other. In addition, two of the beta-strands in the C-terminal domain have exchanged positions in order to maintain the location of essential active site residues in the context of the domain rotation. In ODC, the contacts in the dimer interface are formed primarily by the C-terminal domains, which interact through six aromatic rings that form stacking interactions across the domain boundary. The PLP binding site is formed by the C-termini of beta-strands and loops in the beta/alpha-barrel. In the native structure Lys69 forms a Schiff base with PLP. In both structures, the phosphate of PLP is bound between the seventh and eighth strands forming interactions with Arg277 and a Gly loop (residues 235-237). The pyridine nitrogen of PLP interacts with Glu274. DFMO forms a Schiff base with PLP and is covalently attached to Cys360. It is bound at the dimer interface and the delta-carbon amino group of DFMO is positioned between Asp361 of one subunit and Asp332 of the other. In comparison to the wild-type uncomplexed structure, Cys-360 has rotated 145 degrees toward the active site in the DFMO-bound structure. No domain, subunit rotations, or other significant structural changes are observed upon ligand binding. The structure offers insight into the enzyme mechanism by providing details of the enzyme/inhibitor binding site and allows for a detailed comparison between the enzymes from the host and parasite which will aid in selective inhibitor design.  相似文献   

8.
Intracellular proteolysis plays an important role in regulating fundamental cellularprocesses such as cell cycle, immune and inflammation responses, development,differentiation, and transformation. The ubiquitin-proteasome system accounts for thedegradation of the majority of cellular short-lived proteins. This system involves theconjugation of multiple ubiquitin residues to the target protein and its recognition by the26S proteasome through the poly-ubiquitin chain. Studies on the degradation of ornithinedecarboxylase (ODC) demonstrated that poly-ubiquitin is not the only signal recognizedby the 26S proteasome. The recognition of ODC by the 26S proteasome is mediated byinteraction with a polyamine-induced protein termed, antizyme (Az). While thedegradation of ODC is ubiquitin-independent, the degradation of its regulator Az, and ofantizyme-inhibitor (AzI), an ODC homologous protein that regulates Az availability, areubiquitin dependent. Interestingly, ODC undergoes another type of ubiquitin-independentdegradation by the 20S proteasome that is regulated by NAD(P)H quinoneoxidoreductase 1 (NQO1). Considering the prevalence of the ubiquitin system in theprocess of cellular protein degradation it is rather remarkable that a key cellular enzymeis subjected to two different proteolytic pathways that are different from the ubiquitindependent one. This exceptional behavior of ODC provides us with valuable insightsregarding protein degradation in general.  相似文献   

9.
10.
11.
Fur is a bacterial regulator using iron as a cofactor to bind to specific DNA sequences. This protein exists in solution as several oligomeric states, of which the dimer is generally assumed to be the biologically relevant one. We describe the equilibria that exist between dimeric Escherichia coli Fur and higher oligomers. The dissociation constant for the dimer-tetramer equilibrium is estimated to be in the millimolar range. Oligomerization is enhanced at low ionic strength and pH. The as-isolated monomeric form of Fur is not in equilibrium with the dimer and contains two disulfide bridges (C92-C95 and C132-C137). Binding of the monomer to DNA is metal-dependent and sequence specific with an apparent affinity 5.5 times lower than that of the dimer. Size exclusion chromatography, EDC cross-linking, and CD spectroscopy show that reconstitution of the dimer from the monomer requires reduction of the disulfide bridges and coordination of Zn2+. Reduction of the disulfide bridges or Zn2+ alone does not promote dimerization. EDC and DMA cross-links reveal that the N-terminal NH2 group of one subunit is in an ionic interaction with acidic residues of the C-terminal tail and close to Lys76 and Lys97 of the other. Furthermore, the yields of cross-link drastically decrease upon binding of metal in the activation site, suggesting that the N-terminus is involved in the conformational change. Conversely, oxidizing reagents, H2O2 or diamide, disrupt the dimeric structure leading to monomer formation. These results establish that coordination of the zinc ion and the redox state of the cysteines are essential for holding E. coli Fur in a dimeric state.  相似文献   

12.
The short 8–10 amino acid “hinge” sequence in lactose repressor (LacI), present in other LacI/GalR family members, links DNA and inducer‐binding domains. Structural studies of full‐length or truncated LacI‐operator DNA complexes demonstrate insertion of the dimeric helical “hinge” structure at the center of the operator sequence. This association bends the DNA ~40° and aligns flanking semi‐symmetric DNA sites for optimal contact by the N‐terminal helix‐turn‐helix (HtH) sequences within each dimer. In contrast, the hinge region remains unfolded when bound to nonspecific DNA sequences. To determine ability of the hinge helix alone to mediate DNA binding, we examined (i) binding of LacI variants with deletion of residues 1–50 to remove the HtH DNA binding domain or residues 1–58 to remove both HtH and hinge domains and (ii) binding of a synthetic peptide corresponding to the hinge sequence with a Val52Cys substitution that allows reversible dimer formation via a disulfide linkage. Binding affinity for DNA is orders of magnitude lower in the absence of the helix‐turn‐helix domain with its highly positive charge. LacI missing residues 1–50 binds to DNA with ~4‐fold greater affinity for operator than for nonspecific sequences with minimal impact of inducer presence; in contrast, LacI missing residues 1–58 exhibits no detectable affinity for DNA. In oxidized form, the dimeric hinge peptide alone binds to O1 and nonspecific DNA with similarly small difference in affinity; reduction to monomer diminished binding to both O1 and nonspecific targets. These results comport with recent reports regarding LacI hinge interaction with DNA sequences.  相似文献   

13.
Ornithine decarboxylase (ODC) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the rate-determining step in the biosynthesis of polyamines. ODC is a proven drug target to treat African sleeping sickness. The x-ray crystal structure of Trypanosoma brucei ODC in complex with d-ornithine (d-Orn), a substrate analog, and G418 (Geneticin), a weak non-competitive inhibitor, was determined to 2.5-A resolution. d-Orn forms a Schiff base with PLP, and the side chain is in a similar position to that observed for putrescine and alpha-difluoromethylornithine in previous T. brucei ODC structures. The d-Orn carboxylate is positioned on the solvent-exposed side of the active site (si face of PLP), and Gly-199, Gly-362, and His-197 are the only residues within 4.2 A of this moiety. This structure confirms predictions that the carboxylate of d-Orn binds on the si face of PLP, and it supports a model in which the carboxyl group of the substrate l-Orn would be buried on the re face of the cofactor in a pocket that includes Phe-397, Tyr-389, Lys-69 (methylene carbons), and Asp-361. Electron density for G418 was observed at the boundary between the two domains within each ODC monomer. A ten-amino acid loop region (392-401) near the 2-fold axis of the dimer interface, which contributes several residues that form the active site, is disordered in this structure. The disordering of residues in the active site provides a potential mechanism for inhibition by G418 and suggests that allosteric inhibition from this site is feasible.  相似文献   

14.
Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus exhibits half-of-the-sites reactivity and negative cooperativity in binding of tyrosine. Protein engineering has been applied to the enzyme to determine whether it can be reversibly dissociated into monomers and if the monomers are active. The target for mutation is the residue Phe-164. The side chain of Phe-164 in one subunit interacts with its symmetry-related partner in the other. Mutation of Phe-164----Asp-164 gives a mutant [TyrTS(Asp-164)] that undergoes dissociation at high pH when the aspartate residues are ionized. The monomer is inactive and does not bind tyrosine. Dissociation is enhanced at low concentrations of enzyme by a mass action effect. Kinetic and binding measurements on TyrTS(Asp-164) with tyrosine and tyrosyl adenylate show that the monomer has very weak affinity for these ligands. Accordingly, dimerization is favored by high concentrations of tyrosine and ATP since the dimeric form has a high affinity for the ligands. The presence of tRNA does not encourage dimer formation, and so it must bind to the monomer. TyrTS(Asp-164) is fully active at pH 6 where dimerization is favored but has low activity at pH 7.8 where dissociation is favored. It should now prove possible to engineer heterodimers that may be used to investigate the subunit interactions further.  相似文献   

15.
Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the K d value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis.  相似文献   

16.
Ma JM  He JT  Ning QJ 《生理科学进展》2007,38(2):106-110
抗酶(antizyme)是当细胞内多胺水平升高时刺激机体合成的一种小分子量调节蛋白,能特异性地与鸟氨酸脱羧酶(omithine decarboxylase,ODC)结合,经泛素非依赖途径被26S蛋白酶体降解,从而使多胺合成减少;抗酶还可以调节多胺转运,以稳定细胞内多胺水平。近年来随着生物技术的不断发展,对抗酶的认识也逐步深入,本文综述了抗酶家族、合成、作用及定位等方面的研究进展。  相似文献   

17.
M Herold  B Leistler  A Hage  K Luger  K Kirschner 《Biochemistry》1991,30(15):3612-3620
The coenzyme (PLP) binding domain (residues 47-329) of the dimeric aspartate aminotransferase from Escherichia coli was produced separately by recombinant DNA methods. It folded autonomously both in vivo and in vitro, that is, independently of the native N- and C-terminal extensions that combine to form the small domain of eAAT. The PLP-domain had one binding site for PLP of relatively high affinity involving a covalent bond to the protein. It was monomeric, although the major subunit-subunit interface at the 2-fold symmetry axis remained unchanged. This effect appears to be due mainly to the absence of the N-terminal extension that contains hydrophobic residues, which interact with the PLP-domain of the second subunit in the wild-type dimer. Judged by circular dichroism, fluorescence, and HPLC gel filtration at increasing concentrations of guanidinium chloride, the PLP-domain underwent a three-state unfolding transition (M' in equilibrium M'* in equilibrium U') involving a compact intermediate M'*. This behavior parallels the unfolding of the dissociated native monomer of cAAT.  相似文献   

18.
Ornithine decarboxylase (ODC) forms a stable complex with its antizyme (Az), a non-competitive protein inhibitor of ODC. The complex formation of ODC with Az occurs very rapidly and is dissociated by high salt concentrations e.g., 10% ammonium sulfate. When ODC and Az were mixed in the presence of increasing concentrations of Mg2+, a relief of ODC inhibition by Az was obtained. Complete relief of inhibition occurred at 2.0 mM of MgCl2. Other bivalent cations Ca2+, Ba2+, Co2+, Mn2+, Zn2+ as well as the monocations Na+ and K+ caused similar effect. The polyamines putrescine, spermidine and spermine also caused relief of the in vitro inhibition of ODC by Az. Therefore, the in vivo inactivation of ODC by forming the ODC-Az complex is dependent on the intracellular amounts of salt and polyamines.  相似文献   

19.
BACKGROUND: Pyridoxal-5'-phosphate (PLP) dependent enzymes catalyze a broad range of reactions, resulting in bond cleavage at C alpha, C beta, or C gamma carbons of D and L amino acid substrates. Ornithine decarboxylase (ODC) is a PLP-dependent enzyme that controls a critical step in the biosynthesis of polyamines, small organic polycations whose controlled levels are essential for proper growth. ODC inhibition has applications for the treatment of certain cancers and parasitic ailments such as African sleeping sickness. RESULTS: The structure of truncated mouse ODC (mODC') was determined by multiple isomorphous replacement methods and refined to 1.6 A resolution. This is the first structure of a Group IV decarboxylase. The monomer contains two domains: an alpha/beta barrel that binds the cofactor, and a second domain consisting mostly of beta structure. Only the dimer is catalytically active, as the active sites are constructed of residues from both monomers. The interactions stabilizing the dimer shed light on its regulation by antizyme. The overall structure and the environment of the cofactor are compared with those of alanine racemase. CONCLUSIONS: The analysis of the mODC' structure and its comparison with alanine racemase, together with modeling studies of the external aldimine intermediate, provide insight into the stereochemical characteristics of PLP-dependent decarboxylation. The structure comparison reveals stereochemical differences with other PLP-dependent enzymes and the bacterial ODC. These characteristics may be exploited in the design of new inhibitors specific for eukaryotic and bacterial ODCs, and provide the basis for a detailed understanding of the mechanism by which these enzymes regulate reaction specificity.  相似文献   

20.
Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites – the N‐terminal domain (Site‐I) and the extracellular/transmembrane domain (Site‐II). Therefore, higher monomer affinity could be due to stronger binding at Site‐I or Site‐II or both. We have now characterized the binding of a human CXCR1 N‐terminal domain peptide (hCXCR1Ndp) to WT CXCL8 under conditions where it exists as both monomers and dimers. We show that the WT monomer binds the CXCR1 N‐domain with much higher affinity and that binding is coupled to dimer dissociation. We also characterized the binding of two CXCL8 monomer variants and a trapped dimer to two different hCXCR1Ndp constructs, and observe that the monomer binds with ~10‐ to 100‐fold higher affinity than the dimer. Our studies also show that the binding constants of monomer and dimer to the receptor peptides, and the dimer dissociation constant, can vary significantly as a function of pH and buffer, and so the ability to observe WT monomer peaks is critically dependent on NMR experimental conditions. We conclude that the monomer is the high affinity CXCR1 agonist, that Site‐I interactions play a dominant role in determining monomer vs. dimer affinity, and that the dimer plays an indirect role in regulating monomer function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号