首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling through the B cell antigen receptor (BCR) is negatively regulated by the SH2 domain-containing protein-tyrosine phosphatase SHP-1, which requires association with tyrosine-phosphorylated proteins for activation. Upon BCR ligation, SHP-1 has been shown to associate with the BCR, the cytoplasmic protein-tyrosine kinases Lyn and Syk, and the inhibitory co-receptors CD22 and CD72. How SHP-1 is activated by BCR ligation and regulates BCR signaling is, however, not fully understood. Here we demonstrate that, in the BCR-expressing myeloma line J558L mu 3, CD72 expression reduces the BCR ligation-induced phosphorylation of the BCR component Ig alpha/Ig beta and its cytoplasmic effectors Syk and SLP-65. Substrate phosphorylation was restored by expression of dominant negative mutants of SHP-1, whereas the SHP-1 mutants failed to enhance phosphorylation of the cellular substrates in the absence of CD72. This indicates that SHP-1 is efficiently activated by CD72 but not by other pathways in J558L mu m3 cells and that inhibition of SHP-1 specifically activated by CD72 reverses CD72-induced dephosphorylation of cellular substrates in these cells. Taken together, BCR-induced SHP-1 activation is likely to require inhibitory co-receptors such as CD72, and SHP-1 appears to mediate the negative regulatory effect of CD72 on BCR signaling by dephosphorylating Ig alpha/Ig beta and its downstream signaling molecules Syk and SLP-65.  相似文献   

2.
B cell linker protein (BLNK) is a SLP-76-related adaptor protein essential for signal transduction from the BCR. To identify components of BLNK-associated signaling pathways, we performed a phosphorylation-dependent yeast two-hybrid analysis using BLNK probes. Here we report that the serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1), which is activated upon antigen-receptor stimulation and which has been implicated in the regulation of MAP kinase pathways, interacts physically and functionally with BLNK in B cells and with SLP-76 in T cells. This interaction requires Tyr(379) of HPK1 and the Src homology 2 (SH2) domain of BLNK/SLP-76. Via homology modeling, we defined a consensus binding site within ligands for SLP family SH2 domains. We further demonstrate that the SH2 domain of SLP-76 participates in the regulation of AP-1 and NFAT activation in response to T cell receptor (TCR) stimulation and that HPK1 inhibits AP-1 activation in a manner partially dependent on its interaction with SLP-76. Our data are consistent with a model in which full activation of HPK1 requires its own phosphorylation on tyrosine and subsequent interaction with adaptors of the SLP family, providing a mechanistic basis for the integration of this kinase into antigen receptor signaling cascades.  相似文献   

3.
4.
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.  相似文献   

5.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2, also referred to SH3BP2) regulates immune receptor-mediated signal transduction. In this report we focused on the molecular mechanism of 3BP2 function in B cell receptor (BCR) signaling. Engagement of BCR induces tyrosine phosphorylation of 3BP2. Genetic analysis demonstrated that Syk is critical for BCR-mediated tyrosine phosphorylation of 3BP2. Mutational analysis of 3BP2 revealed that both Tyr183 and Src homology 2 (SH2) domain are necessary for 3BP2-mediated BCR-induced activation of nuclear factor of activated T cells (NFAT). Point mutation of Tyr183 or Arg486 in the SH2 domain of 3BP2 diminished BCR-mediated tyrosine phosphorylation of 3BP2. Endogenous 3BP2 forms a complex with tyrosine-phosphorylated cellular signaling molecules. Peptide binding experiments demonstrated that only phosphorylated Tyr183 in 3BP2 could form a complex with the SH2 domain(s) of phospholipase Cγ2 and Vav1 from B cell lysates. These interactions were represented by using bacterial glutathione S-transferase-phospholipase Cγ2 or -Vav1 SH2 domain. Furthermore, pulldown and Far Western experiments showed that the 3BP2-SH2 domain directly binds to B cell linker protein (BLNK) after BCR stimulation. These results demonstrated that 3BP2 induces the protein complex with cellular signaling molecules through phosphorylation of Tyr183 and SH2 domain leading to the activation of NFAT in B cells.  相似文献   

6.
Nucleocytoplasmic trafficking of the Syk protein tyrosine kinase   总被引:3,自引:0,他引:3       下载免费PDF全文
The protein tyrosine kinase Syk couples the B-cell receptor (BCR) for antigen to multiple intracellular signaling pathways and also modulates cellular responses to inducers of oxidative stress in a receptor-independent fashion. In B cells, Syk is found in both the nuclear and cytoplasmic compartments but contains no recognizable nuclear localization or export signals. Through the analysis of a series of deletion mutants, we identified the presence of an unconventional shuttling sequence near the junction of the catalytic domain and the linker B region that accounts for Syk's subcellular localization. This localization is altered following prolonged engagement of the BCR, which causes Syk to be excluded from the nucleus. Nuclear exclusion requires the receptor-mediated activation of protein kinase C and new protein synthesis. Both of these processes also potentiate the activation of caspase 3 in cells in response to oxidative stress in a manner that is dependent on the localization of Syk outside of the nucleus. In contrast, restriction of Syk to the nucleus greatly diminishes the stress-induced activation of caspase 3.  相似文献   

7.
Activation process of mature B cell is predominantly driven by specific BCR-mediated pathways, switched on and off all through late B cell differentiation stages. Mice deficient for APS, a member of the Lnk/SH2B family of adaptor proteins, showed that this adaptor plays a BCR-mediated regulatory role in mature B cells. However, the intermediates involved in this adaptor modulating functions in B cells are still unknown. In the present study, we investigated the role of APS in regulating BCR signalling notably through cytoskeleton remodeling in mature B cells. Herein, we showed that APS function is stage specific, as it exclusively intervenes in mature B cells. Upon activation, APS colocalizes with the BCR and associates with important regulators of BCR signalling, such as Syk and Cbl kinase. Importantly, APS interferes, as a scaffold protein, with the stability of Syk kinase by recruiting Cbl. This function is mainly mediated by APS SH2 domain, which regulates BCR-evoked cell dynamics. Our findings thus reveal that APS plays a regulatory role in BCR-induced responses by specifically modulating its interacting partners, which positions APS as a relevant modulator of BCR signalling in mature B cells.  相似文献   

8.
Y Zhang  J Wienands  C Zürn    M Reth 《The EMBO journal》1998,17(24):7304-7310
The binding of antigen to the B cell antigen receptor (BCR) results in the activation of protein tyrosine kinases (PTKs) such as Lyn and Syk, and the phosphorylation of several substrate proteins including HS1 and SLP-65. How these signaling elements are connected to the BCR is not well understood. Using an expression vector for a tamoxifen-regulated Cre recombinase, we have developed a method that allows the inducible expression of the BCR. Disruption of the VH leader reading frame of the immunoglobulin heavy chain by two loxP sites is overcome by Cre-mediated DNA recombination and results in the cell surface expression of the BCR starting 4 h after exposure of transfected B cells to tamoxifen. This method can, in principle, be employed for the inducible expression of any secreted or type I transmembrane protein. By monitoring the activation of signaling elements in pervanadate-stimulated B cells expressing different levels of the BCR, we show here that phosphorylation of SLP-65 and Syk, but not of Lyn, is strictly dependent on the expression of the BCR on the cell surface. These data suggest that the BCR reorganizes its signaling molecules as soon as it appears on the cell surface.  相似文献   

9.
MIST (also termed Clnk) is an adaptor protein structurally related to SLP-76 and BLNK/BASH/SLP-65 hematopoietic cell-specific adaptor proteins. By using the BLNK-deficient DT40 chicken B cell system, we demonstrated MIST functions through distinct intramolecular domains in immunoreceptor signaling depending on the availability of linker for activation of T cells (LAT). MIST can partially restore the B cell antigen receptor (BCR) signaling in the BLNK-deficient cells, which requires phosphorylation of the two N-terminal tyrosine residues. Co-expression of LAT with MIST fully restored the BCR signaling and dispenses with the requirement of the two tyrosines in MIST for BCR signaling. However, some other tyrosine(s), as well as the Src homology (SH) 2 domain and the two proline-rich regions in MIST, is still required for full reconstitution of the BCR signaling, in cooperation with LAT. The C-terminal proline-rich region of MIST is dispensable for the LAT-aided full restoration of MAP kinase activation, although it is responsible for the interaction with LAT and for the localization in glycolipid-enriched microdomains. On the other hand, the N-terminal proline-rich region, which is a binding site of the SH3 domain of phospholipase Cgamma, is essential for BCR signaling. These results revealed a marked plasticity of MIST function as an adaptor in the cell contexts with or without LAT.  相似文献   

10.
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.  相似文献   

11.
Syk tyrosine kinase and Src homology 2 (SH2) domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) are signaling mediators activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-containing immunoreceptors and integrins. While the signaling cascades descending from integrins are similar to immunoreceptors, the mechanism of Syk activation and SLP-76 recruitment remains unclear. We used an in vivo structure-function approach to study the requirements for the domains of Syk and SLP-76 in immunoreceptor and integrin signaling. We found that both SH2 domains and the kinase domain of Syk are required for immunoreceptor-dependent signaling and cellular response via integrins. While the Gads-binding domain of SLP-76 is needed for immunoreceptor signaling, it appears dispensable for integrin signaling. Syk and SLP-76 also are required for initiating and/or maintaining separation between the blood and lymphatic vasculature. Therefore, we correlated the signaling requirement of the various domains of Syk and SLP-76 to their requirement in regulating vascular separation. Our data suggest ITAMs are required in Syk-dependent integrin signaling, demonstrate the separation of the structural features of SLP-76 to selectively support immunoreceptor versus integrin signaling, and provide evidence that the essential domains of SLP-76 for ITAM signals are those which most efficiently support separation between lymphatic and blood vessels.  相似文献   

12.
13.
The Syk tyrosine kinase is a key molecule in the development of the B cell lineage and the activation of B lymphocytes after Ag recognition by the B cell Ag receptor (BCR). Several genetic studies with chicken B cells have reported that the recruitment of Syk by BCR is essential for activation of a cascade of signaling molecules including phosphatidylinositol 3-kinase, mitogen-activated protein kinases, Ras signaling pathways, phospholipase C-gamma2 activation, and calcium mobilization. The identification of a Syk-deficient mouse IIA1.6/A20 B cell line provided us the opportunity to investigate Syk-mediated signaling in mouse. Surprisingly, phosphatidylinositol 3-kinase, Ras, and mitogen-activated protein kinases were activated upon BCR cross-linking in these Syk-deficient mouse B cells, whereas, as expected from results obtained in chicken B cells, phospholipase C-gamma2 activation and calcium mobilization were impaired as well as the NF-kappaB pathway. These results indicate that BCR signaling is not strictly dependent on Syk expression in mouse IIA1.6/A20 B cells. Thus, B lymphocyte activation may be initiated by Syk-dependent and Syk-independent signaling cascades.  相似文献   

14.
The spleen tyrosine kinase family members Syk and Zap-70 are pivotal signal transducers downstream of antigen receptors and exhibit overlapping expression patterns at early lymphocytic developmental stages. To assess their differential kinase fitness in vivo, we generated mice, which carry a Zap-70 cDNA knock-in controlled by intrinsic Syk promoter elements that disrupts wild-type Syk expression. Kinase replacement severely compromised Erk1/2-mediated survival and proper selection of developing B cells at central and peripheral checkpoints, demonstrating critical dependence on BCR signalling quality. Furthermore, ITAM- and hemITAM-mediated activation of platelets and neutrophils was completely blunted, while surprisingly FcγR-mediated phagocytosis in macrophages was retained. The alteration in BCR signalling quality resulted in preferential development and survival of marginal zone B cells and prominent autoreactivity, causing the generation of anti-insulin antibodies and age-related glomerulonephritis. Development of concomitant fasting glucose intolerance in knock-in mice highlights aberrant B cell selection as a potential risk factor for type 1 diabetes, and suggests altered BCR signalling as a mechanism to cause biased cellular and Ig repertoire selection, ultimately contributing to B cell-mediated autoimmune predisposition.  相似文献   

15.
Cross-linking of the B-cell antigen receptor (BCR) induces tyrosine phosphorylation of Shc, which is believed to lead to the activation of Ras. Previous work has shown that tyrosine-phosphorylated Shc forms complexes with another adapter protein, Grb2, and the Ras guanine nucleotide exchange factor SOS. Here, we demonstrate that phosphorylation of Shc by the hematopoietic cell-specific tyrosine kinase Syk induces binding of Grb2 to Shc, suggesting that Syk phosphorylates Shc in stimulated B cells. Surprisingly, Syk-phosphorylated Shc possesses two Grb2 binding sites rather than the one site that has been previously reported. Both of these sites are required for efficient formation of Shc-Grb2-SOS complexes in vitro and in vivo. We suggest that two Grb2 proteins anchored by a single Shc protein bind simultaneously to one SOS molecule, resulting in a complex that is more stable than a complex containing only a single Grb2 protein bound to one SOS molecule. This model is consistent with our observation that BCR stimulation greatly increases the amount of SOS associated with Grb2.  相似文献   

16.
Antigen binding to the B-cell receptor (BCR) induces multiple signaling cascades that ultimately lead to B lymphocyte activation. In addition, the BCR regulates the key trafficking events that allow the antigen to reach endocytic compartments devoted to antigen processing, i.e., that are enriched for major histocompatibility factor class II (MHC II) and accessory molecules such as H2-DM. Here, we analyze the role in antigen processing and presentation of the tyrosine kinase Syk, which is activated upon BCR engagement. We show that convergence of MHC II- and H2-DM-containing compartments with the vesicles that transport BCR-uptaken antigens is impaired in cells lacking Syk activity. This defect in endocytic trafficking compromises the ability of Syk-deficient cells to form MHC II-peptide complexes from BCR-internalized antigens. Altered endocytic trafficking is associated to a failure of Syk-deficient cells to properly reorganize their actin cytoskeleton in response to BCR engagement. We propose that, by modulating the actin dynamics induced upon BCR stimulation, Syk regulates the positioning and transport of the vesicles that carry the molecules required for antigen processing and presentation.  相似文献   

17.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr174, Tyr183 and Tyr446 in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr183 and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr174, Tyr183 and Tyr426 of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr426 is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr426 was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr426 following BCR stimulation.  相似文献   

18.
Activation of the high affinity IgE-binding receptor (FcεRI) results in the tyrosine phosphorylation of two conserved tyrosines located close to the COOH terminus of the protein-tyrosine kinase Syk. Synthetic peptides representing the last 10 amino acids of the tail of Syk with these two tyrosines either nonphosphorylated or phosphorylated were used to precipitate proteins from mast cell lysates. Proteins specifically precipitated by the phosphorylated peptide were identified by mass spectrometry. These included the adaptor proteins SLP-76, Nck-1, Grb2, and Grb2-related adaptor downstream of Shc (GADS) and the protein phosphatases SHIP-1 and TULA-2 (also known as UBASH3B or STS-1). The presence of these in the precipitates was further confirmed by immunoblotting. Using the peptides as probes in far Western blots showed direct binding of the phosphorylated peptide to Nck-1 and SHIP-1. Immunoprecipitations suggested that there were complexes of these proteins associated with Syk especially after receptor activation; in these complexes are Nck, SHIP-1, SLP-76, Grb2, and TULA-2 (UBASH3B or STS-1). The decreased expression of TULA-2 by treatment of mast cells with siRNA increased the FcεRI-induced tyrosine phosphorylation of the activation loop tyrosines of Syk and the phosphorylation of phospholipase C-γ2. There was parallel enhancement of the receptor-induced degranulation and activation of nuclear factor for T cells or nuclear factor κB, indicating that TULA-2, like SHIP-1, functions as a negative regulator of FcεRI signaling in mast cells. Therefore, once phosphorylated, the terminal tyrosines of Syk bind complexes of proteins that are positive and negative regulators of signaling in mast cells.  相似文献   

19.
Spleen tyrosine kinase Syk and its substrate SLP65 (also called BLNK) are proximal signal transducer elements of the B-cell antigen receptor (BCR). Yet, our understanding of signal initiation and processing is limited owing to the incomplete list of SLP65 interaction partners and our ignorance of their association kinetics. We have now determined and quantified the in vivo interactomes of SLP65 in resting and stimulated B cells by mass spectrometry. SLP65 orchestrated a complex signal network of about 30 proteins that was predominantly based on dynamic interactions. However, a stimulation-independent and constant association of SLP65 with the Cbl-interacting protein of 85 kDa (CIN85) was requisite for SLP65 phosphorylation and its inducible plasma membrane translocation. In the absence of a steady SLP65/CIN85 complex, BCR-induced Ca(2+) and NF-κB responses were abrogated. Finally, live cell imaging and co-immunoprecipitation experiments further confirmed that both SLP65 and CIN85 are key components of the BCR-associated primary transducer module required for the onset and progression phases of BCR signal transduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号