首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modifications to the commonly employed lysine Sepharose affinity chromatography method for the purification of plasminogen from human plasma, give a preparation of native, Glu-plasminogen which is free of plasmin contamination.  相似文献   

2.
Streptokinase is an extracellular protein produced by several strains of streptococci. It functions in the species-specific conversion of plasminogen to plasmin. In this paper we describe the purification of streptokinase by affinity chromatography on human plasminogen acylated with p'-nitrophenyl p-guanidinobenzoate. The acylated and non-acylated plasminogen and plasmin were coupled to cyanogen bromide-activated Sepharose 4B and evaluated for streptokinase purification. These results show that a homogeneous preparation of streptokinase with high specific activity and high yield can be obtained using acylated plasminogen. This method permits the binding of one milligram of streptokinase per milliliter of swollen gel.  相似文献   

3.
A plasminogen activator secreted from human kidney cells was highly purified by affinity chromatography on an anti-urokinase IgG-Sepharose column. The purified plasminogen activator was inactive and had a single-chain structure and a Mr of 50,000. It not only did not incorporate diisopropyl fluorophosphate, which reacts with active site serine residue in urokinase, but also did not bind to p-aminobenzamidine-immobilized CH-Sepharose, to which urokinase bind via its side-chain binding pocket present in active center. The plasminogen activator was converted to the active two-chain form with the same Mr by catalytic amounts of plasmin. Its potential enzymatic activity was quenched completely by anti-urokinase IgG, but not by anti-tissue plasminogen activator Ig. These results indicate that the plasminogen activator is an inactive proenzyme form of human urokinase. Therefore, the plasminogen activator was termed single-chain pro-urokinase. The cleavage of single-chain pro-urokinase by plasmin induced conformational change which followed the generation of reactive serine residue at active site, the increase enzyme activity and the reduction of its high affinity for fibrin. These findings suggest that conformational change occurs in both regions responsible for enzyme activity and affinity for fibrin upon activation of single-chain pro-urokinase.  相似文献   

4.
This report describes the purification and characterization of single-chain tissue-type plasminogen activator (sct-PA) present in tissue culture medium of a cell line established from human uterine muscle. The cell line used for the experiment, KW, had estrogen receptor. The PA fraction (KW-PA) was purified from the tissue culture medium of KW employing several steps of affinity chromatography and gel filtration in the presence of aprotinin. The final product (KW-PA) of purification, which predominantly contained the inactive form of sct-PA as well as active sct-PA to a lesser extent, revealed a single band with a molecular weight of 70,000 on sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis both in the absence and presence of reducing agent. Electrophoretic enzymography demonstrated a single lytic zone at Mr 70,000. When KW-sct-PA was treated with plasmin, SDS-polyacrylamide gel electrophoresis revealed two bands of Mr 37,000 and 33,000 under reduced conditions. Such plasmin treatment of KW-sct-PA enhanced the enzymatic activity as well as the [3H]DFP incorporation significantly. The KW-sct-PA demonstrated a higher affinity for lysine than did melanoma-t-PA, but the fibrin affinity of KW-sct-PA was identical with that of melanoma-t-PA. Circular dichroism (CD) analysis showed that the CD spectra of KW-sct-PA were different from those of melanoma-t-PA. These results suggest that the single-chain inactive form of t-PA which was obtained from the tissue culture medium of the cell line from human uterine muscle is activated to a two-chain form on plasmin treatment, with an accompanying significant increase in enzymatic activity.  相似文献   

5.
The primary inhibitor of plasmin in human plasma was purified by a four-step procedure involving fractional (NH(4))(2)SO(4) precipitation, ion-exchange chromatography on a column of DEAE-Sepharose CL-6B and affinity chromatography on both a plasminogen-CH-Sepharose 4B column and a column of 6-aminohexanoic acid covalently coupled through the carboxylate function to AH-Sepharose 4B. No impurities in the final preparation could be detected when tested by immunoelectrophoresis against a range of specific antisera or against rabbit anti-human serum. On polyacrylamide-gel electrophoresis the inhibitor preparation showed a single band. The dissociation constant for the inhibitor-plasminogen complex was determined to be approx. 3mum at pH7.8. The reactions of the inhibitor with human plasmin and with bovine trypsin were studied. Comparison of the results obtained confirms the hypothesis previously presented, namely that the reaction of the inhibitor with plasmin involves at least two steps, the initial rapid formation of an enzyme-inhibitor complex followed by a slow irreversible transition to another complex. The results also indicate that the reaction of the inhibitor with trypsin involves just a single, irreversible step, so that this reaction seems to be less complicated than that of the inhibitor with plasmin. The ways in which 6-aminohexanoic acid influences the reactions were studied. The same value for the dissociation constant (approx. 26mum) for 6-aminohexanoic acid is obtained for both its effect on the reaction of the inhibitor with trypsin and for competitive inhibition of trypsin. The inhibitory effect of 6-aminohexanoic acid thus seems to be due to its blocking of the active site of trypsin. In contrast with this, the inhibitory effects of l-lysine and 6-aminohexanoic acid on the inhibitor-plasmin reaction occur at concentrations much too low to affect the active site of plasmin. The possible dependence of the reaction of the inhibitor with plasmin on a second site(s) on plasmin is discussed.  相似文献   

6.
Chromogranin A (CgA), the major soluble protein in catecholamine storage vesicles, serves as a prohormone that is cleaved into bioactive peptides that inhibit catecholamine release, providing an autocrine, negative feedback mechanism for regulating catecholamine responses during stress. However, the proteases responsible for the processing of CgA and release of bioactive peptides have not been established. Recently, we found that chromaffin cells express components of the plasmin(ogen) system, including tissue plasminogen activator, which is targeted to catecholamine storage vesicles and released with CgA and catecholamines in response to sympathoadrenal stimulation, and high affinity cell surface receptors for plasminogen, to promote plasminogen activation at the cell surface. In the present study, we investigated processing of CgA by plasmin and sought to identify specific bioactive CgA peptides produced by plasmin proteolysis. Highly purified human CgA (hCgA) was produced by expression in Escherichia coli and purification using metal affinity chromatography. hCgA was digested with plasmin. Matrix-assisted laser desorption/ionization mass spectrometry identified a major peptide produced with a mass/charge ratio (m/z) of 1546, corresponding uniquely to hCgA-(360-373), the identity of which was confirmed by reverse phase high pressure liquid chromatography and amino-terminal microsequencing. hCgA-(360-373) was selectively liberated by plasmin from hCgA at early time points and was stable even after prolonged exposure to plasmin. The corresponding synthetic peptide markedly inhibited nicotine-induced catecholamine release from pheochromocytoma cells. These results identify plasmin as a protease, present in the local environment of the chromaffin cell, that selectively cleaves CgA to generate a bioactive fragment, hCgA-(360-373), that inhibits nicotinic-mediated catecholamine release. These results suggest that the plasminogen/plasmin system through its interaction with CgA may play a major role in catecholaminergic function and suggest a specific mechanism as well as a discrete CgA peptide through which this effect is mediated.  相似文献   

7.
The primary inhibitor of plasmin in human plasma.   总被引:9,自引:0,他引:9       下载免费PDF全文
A complex between plasmin and an inhibitor was isolated by affinity chromatography from urokinase-activated human plasma. The complex did not react with antibodies against any of the known proteinase inhibitors in plasma. A rabbit antiserum against the complex was produced. It contained antibodies agianst plasminogen+plasmin and an alpha2 protein. By crossed immunoelectrophoresis the alpha2 protein was shown to form a complex with plasmin, when generated by urokinase in plasma, and with purified plasmin. The alpha2 protein was eluted by Sephadex G-200 gel filtration with KD approx. 0.35, different from the other inhibitors of plasmin in plasma, and corresponding to an apparent relative molecular mass (Mr) of about 75000. By sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Mr of the complex was found to be approx. 130000. After reduction of the complex two main bands of protein were observed, with Mr, about 72000 and 66000, probably representing an acyl-enzyme complex of plasmin-light chain and inhibitor-heavy chain, and a plasmin-heavy chain. A weak band with Mr 9000 was possibly an inhibitor-light chain. The inhibitor was partially purified and used to titrate purified plasmin of known active-site concentration. The inhibitor bound plasmin rapidly and strongly. Assuming an equimolar combining ratio, the concentration of active inhibitor in normal human plasma was estimated to be 1.1 mumol/1. A fraction about 0.3 of the antigenic inhibitor protein appeared to be functionally inactive. In plasma, plasmin is primarily bound to the inhibitor. Only after its saturation does lysis of fibrinogen and fibrin occur and a complex between plasmin and alpha2 macroglobulin appear.  相似文献   

8.
K G Buki  E Kun 《Biochemistry》1988,27(16):5990-5995
Proteolysis by plasmin inactivates bovine ADP-ribosyltransferase; therefore, enzymatic activity depends exclusively on the intact enzyme molecule. The transferase was hydrolyzed by plasmin to four major polypeptides, which were characterized by affinity chromatography and N-terminal sequencing. Based on the cDNA sequence for human ADP-ribosyltransferase enzyme [Uchida, K., Morita, T., Sato, T., Ogura, T., Yamashita, R., Noguchi, S., Suzuki, H., Nyunoya, H., Miwa, M., & Sugimura, T. (1987) Biochem. Biophys. Res. Commun. 148, 617-622], a polypeptide map of the bovine enzyme was constructed by superposing the experimentally determined N-terminal sequences of the isolated polypeptides on the human sequence deduced from its cDNA. Two polypeptides, the N-terminal peptide (Mr 29,000) and the polypeptide adjacent to it (Mr 36,000), exhibited binding affinities toward DNA, whereas the C-terminal peptide (Mr 56,000), which accounts for the rest of the transferase protein, bound to the benzamide-Sepharose affinity matrix, indicating that it contains the NAD+-binding site. The fourth polypeptide (Mr 42,000) represents the C-terminal end of the larger C-terminal fragment (Mr 56,000) and was formed by a single enzymatic cut by plasmin of the polypeptide of Mr 56,000. The polypeptide of Mr 42,000 still retained the NAD+-binding site. The plasmin-catalyzed cleavage of the polypeptide of Mr 56,000-42,000 was greatly accelerated by the specific ligand NAD+. Out of a total of 96 amino acid residues sequenced here, there were only 6 conservative replacements between human and bovine ADP-ribosyltransferase.  相似文献   

9.
Plasminogen receptors have been identified on the surface of a number of prokaryotic and eukaryotic cells. A receptor demonstrating high affinity for plasmin with minimal reactivity with the native zymogen Glu-plasminogen has been identified on the surface of certain group A streptococci. In this study the group A streptococcal plasmin receptor has been solubilized and purified to homogeneity. The isolated protein was an Mr approximately 41,000 molecule which retained its ability to bind plasmin following solubilization and affinity purification on a column of enzymatically inactivated human plasmin. The isolated plasmin receptor was compared functionally, antigenically, and physicochemically to the secreted plasminogen activator, streptokinase, produced by the same organism. The Mr approximately 41,000 surface plasmin receptor was shown to be functionally and antigenically distinct from the Mr approximately 48,000 streptokinase molecule produced by the same strain and lacked any plasminogen activator activity. The streptokinase molecule produced by this strain was shown to be closely related to the plasminogen activator protein secreted by other group A and C streptococci. This study represents the first report of the isolation of a plasmin receptor, either prokaryotic or eukaryotic, with functional activity.  相似文献   

10.
A new intracellular inhibitor of plasmin and trypsin was isolated from porcine leukocytes by ion exchange chromatography and affinity chromatography. In dodecyl sulphate gel electrophoresis a single protein band with an apparent molecular mass of 15 kDa was found under reducing conditions. On isoelectric focusing three protein bands with isoelectric points between pH 4.0 and 4.5 were found. The association rate constants and the inhibition constants were determined for porcine plasmin and bovine trypsin. The inhibitor shows no immunologic cross-reactivity with any of the tested leukocyte inhibitors. On the basis of its N-terminal amino-acid sequence a great degree of similarity to Kunitz-type inhibitors was observed.  相似文献   

11.
Kunitz-type inhibitors in human serum. Identification and characterization   总被引:1,自引:0,他引:1  
Human serum contains small amounts (approximately 0.1 mg/liter) of two protein protease inhibitors of low molecular weight (approximately 6500) and basic isoelectric point (Kunitz-type). They were purified by affinity chromatography on immobilized trypsin and ion-exchange chromatography in the fast protein liquid chromatography system. Their chemical, immunochemical, and functional properties indicate that the purified inhibitors are highly homologous with the basic pancreatic trypsin inhibitor which is widely distributed in bovids and caprids. Their inhibitory activity toward serine proteases such as plasmin and kallikrein suggests a possible regulatory role in blood clotting and fibrinolysis.  相似文献   

12.
Purification of rabbit bone inhibitor of collagenase.   总被引:20,自引:7,他引:20       下载免费PDF全文
1. Rabbit bones in tissue culture synthesize an inhibitor of collagenase during the first 4 days of culture. 2. The inhibitor was purified by a combination of gel filtration, concanavalin A--Sepharose chromatography, ion-exchange chromatography and zinc-chelate affinity chromatography. 3. The purified inhibitor migrated as a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and had a mol.wt. of 28000. 4. The inhibitor blocked the activity of the metalloproteinases collagenase, gelatinase, neutral proteinase III (proteoglycanase), human leucocyte collagenase and gelatinase, but not thermolysin or bacterial collagenase. The serine proteinases plasmin and trypsin were not inhibited. 5. The inhibitor interacted with purified rabbit bone collagenase with 1:1 stoichiometry. 6. The inhibitory activity was lost after incubation for 1 h at 90 degrees C, after treatment with trypsin (250 micrograms/ml) at 37 degrees C for 30 min and after reduction and alkylation.  相似文献   

13.
After incubation of confluent monolayer cultures of human HT-1080 fibrosarcoma cells with purified native human plasminogen in plasminogen-depleted serum-containing medium, bound plasmin activity could be specifically eluted from the cells with tranexamic acid, an analogue of lysine. Dexamethasone reduced the amount of recoverable bound plasmin activity in a dose-dependent manner. Dexamethasone was also found to induce a time- and dose-dependent decrease in the ability of the cells to bind added plasmin. Untreated HT-1080 cells bound added plasmin with a high capacity (600,000 molecules bound per cell), and this decreased to an undetectable level after treatment with 100 nM dexamethasone. The kinetics of the loss of plasmin binding by the dexamethasone-treated sarcoma cells, a clear decrease after 4 h, correlated with those for the loss of cell-bound urokinase (u-PA) activity. Plasmin was not, however, bound to the active site of u-PA: an anti-catalytic monoclonal antibody to u-PA had no effect on plasmin binding. Other glucocorticoids, such as hydrocortisone and corticosterone, had a similar effect to dexamethasone on plasmin binding to HT-1080 cells. The effect of glucocorticoids on the plasmin receptor seemed to occur at least partly via a decrease in the affinity for plasmin, since the Kd for plasmin with untreated cells was 5.4 x 10(-9) M, and with cells treated with 5 nM dexamethasone, the Kd value for plasmin was 1.2 x 10(-7) M. These results show that glucocorticoids induce down-regulation of plasmin receptors on the surface of HT-1080 cells: a novel mechanism, in addition to the known effects of glucocorticoids on u-PA and PA inhibitors, by which human tumor cells may be disarmed of their pericellular proteolytic activity.  相似文献   

14.
Immunoglobulin G from a patient convalescing from acute poststreptococcal glomerulonephritis (APSGN) bound specific antigenic sites in early APSGN glomeruli. A streptococcal cytoplasmic antigen (preabsorbing antigen, PA-Ag), could selectively preabsorb fluorescein isothiocyanate (FITC)-labeled IgG and prevented glomerular staining. The antigen was purified and identified as an M(r) approximately 43,000 protein with a pI of 4.7 that strongly activated complement C3 (N. Yoshizawa, S. Oshima, I. Sagel, J. Shimizu, and G. Treser, 1992, J. Immunol. 148, 3110-3116). In the present study, a nephritogenic antigen was purified by affinity chromatography using APSGN IgG-immobilized Sepharose followed by chromatography on an anion-exchange resin. Purification was monitored by ELISA and Western blotting using the binding characteristics of the specific antibodies present in APSGN serum. The molecular weight of the purified antigen, named nephritis-associated plasmin receptor (NAPlr), was an M(r) approximately 43,000 protein and the internal amino acid sequence was found to be homologous to those of the plasmin receptor (Plr) of group A streptococci strain 64/14 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus subtilis. The purified NAPlr exhibited GAPDH activity and plasmin(ogen) binding activity. Using FITC-labeled rabbit anti-NAPlr, the antigen was found to be present in the glomeruli of 22 of 22 patients in the early stage of APSGN. Bacterial Plr was also demonstrated in human APSGN glomeruli for the first time using monoclonal antibody to the recombinant Plr protein. Antibody to NAPlr was found in the sera of 46 of 50 (92%) patients within 3 months of onset. These results led us to speculate that NAPlr bound to the glomeruli may contribute to the pathogenesis of APSGN via plasmin and complement activation.  相似文献   

15.
A functionally active human plasmin light (B) chain derivative, stabilized by the streptomyces plasmin inhibitor leupeptin, was isolated from a partially reduced and alkylated enzyme preparation by an affinity chromatography method with a L-lysine-substituted Sepharose column. This light (B) chain derivative was found to be relatively homogeneous by electrophoretic analysis in both an acrylamide gel/dodecyl sulfate system and on cellulose acetate. It possessed approximately 3% of the proteolytic activity (casein substrate) of the original enzyme, and it incorporated 0.09 mol of [3H]diisopropyl phosphorofluoridate per mol of protein. It contained 3.1 +/- 0.3 carboxymethylated cysteines per mol of protein and can be designated as a CmCys5-light (B) chain (CmCys)3. When this isolated light (B) chain derivative was mixed in equal molar amounts with streptokinase, the mixture developed both human and bovine plasminogen activator activities; the bovine activator activity was approximately 66% of the bovine activator activity of the equimolar human plasmin-streptokinase complex. Although this complex now incorporated 0.50 mol of [3H]diisopropyl phosphorofluoridate per mol of protein, its proteolytic activity, on a molar basis, was the same as the proteolytic activity of the isolated light (B) chain derivative. It was shown by electrophoretic analysis in both an acrylamide gel/epsilon-aminocaproic acid system and on cellulose acetate that the light (B) chain derivative and streptokinase forms an equimolar light (B) chain-streptokinase complex, indicating that the binding site for streptokinase is located on the light (B) chain of the enzyme. A functionally active equimolar light (B) chain-streptokinase complex was also isolated from a partially reduced and alkylated equimolar human plasmin-streptokinase complex by the affinity chromatography method. The plasminogen activator activities (human and bovine) of this light (B) chain-streptokinase complex were similar to those of the plasmin-streptokinase complex from which it was derived. Although this complex incorporated 0.70 mol of [3H]diisopropyl phosphorofluoridate per mol of protein, its proteolytic activity, on a molar basis, was only 14% of proteolytic activity of the plasmin-streptokinase complex.  相似文献   

16.
We have found that tissue plasminogen activator catalyzes the binding of plasminogen (Pg) to immunoglobulin G (IgG) immobilized on a surface. This enhancement is due to the formation of plasmin, since plasmin treatment of immobilized IgG produced a 20-fold increase in Pg binding. Pg binding is lysine site dependent and reversible. The augmentation of Pg binding by plasmin is specific as other proteases produced significantly less or no effect. Immobilized plasmin-treated IgG also specifically binds Pg in plasma. IgG-immobilized Pg is activated by tissue plasminogen activator, and a significant portion of the plasmin formed remains bound to the IgG. The Pg reactive species in a plasmin-treated IgG digest was identified as the Fab fragment by chromatography utilizing the immobilized high affinity lysine-binding site of plasminogen. Specificity of the interaction was further demonstrated by immunoblot-ligand analysis which demonstrated that the plasmin-derived Fab fragment bound Pg whereas papain-derived Fab or plasmin-derived Fc fragments did not. These data suggest that Pg binds to the new COOH-terminal lysine residue of the plasmin-derived Fab. Pg also binds to an immobilized immune complex following plasmin treatment. These findings indicate that surface-bound IgG localizes plasminogen thus extending the spectrum of activity of the plasmin system to immunologic reactions.  相似文献   

17.
A proteinase which can activate human, dog and rat plasminogen to plasmin has been isolated from the urine of female rats, using affinity chromatography on benzamidine-coupled Sepharose. Inhibition by diisopropylfluorophosphate, tosyl-L-lysine chloromethylketone and benzamidine classified the enzyme as trypsin-like. The proteinase has weak activity on alpha-casein and hemoglobin, but will not lyse fibrin clots. It readily cleaves arginyl amides, including synthetic substrates specific for human glandular kallikrein and other serine proteinases. A chromogenic substrate for human urokinase (pyro Glu-Gly-Arg-pNA) is a poor substrate for the rat proteinase. Characteristics of the enzyme, such as its molecular weight (25 900), kinetic parameters and inhibition by aprotinin, indicate that this proteinase is esterase A, described by several investigators. Esterase A is shown not to be a true urinary plasminogen activator but rather is a unique arginine-specific proteinase. Urokinase-like and kallikrein-like activity are part of a broader proteolytic activity displayed by this enzyme.  相似文献   

18.
An inhibitor of the plasma proteinase plasmin (EC 3.4.21.7) was partially purified from washed and lysed human blood platelets by (NH4)2SO4 fractionation and affinity chromatrography on Sepharose-linked purified plasminogen. The material contained none of the known plasma proteinase inhibitors when studied by crossed-immunoelectrophoresis and electroimmunoassay, but inhibited a clot-lysis-time assay and an esterolytic assay that used the synthetic substrate S-2251 (D-Val-Leu-Lys-p-nitroanilide). The inhibitory activity had the same mobility as the alpha 2-plasma proteins on preparative agarose-gel electrophoresis. Titration of the inhibitor preparation by active-site-titrated plasmin demonstrated a dissociation constant of approx. 0.1 nM. The inhibition was complete within 1 min. The inhibitor increased the mobility in agarose-gel electrophoresis of purified activator-free plasmin or 125I-labelled plasmin, as demonstrated by crossed-immunoelectrophoresis against specific immunoglobulins against plasminogen or by radioautography. The results strongly suggest the presence in platelets of a plasmin inhibitor different from the known plasma proteinase inhibitors.  相似文献   

19.
A simple and efficient method of obtaining D and E fragments from the plasmin degradation products of human, canine and bovine fibrinogens and human fibrin is described. The method utilizes QAE-Sephadex for ion-exchange chromatography.  相似文献   

20.
A functionally active human microplasminogen without kringle structures was produced by incubation of plasminogen with urokinase-free plasmin at an alkaline pH. The microplasminogen was purified by affinity chromatography on lysine- and soybean trypsin inhibitor-Sepharose and by chromofocusing. Human plasminogen is specifically cleaved at Arg529-Lys530 by plasmin to form microplasminogen, which consists of a single polypeptide of 261 residues from the COOH-terminal portion of native plasminogen. It has an Mr of 28,617, calculated from the sequence, which is consistent with the molecular weight determined by sodium dodecyl sulfate gel electrophoresis. Microplasminogen is a slightly basic protein and is eluted from a chromofocusing column at pH 8.3. It can be activated by urokinase and streptokinase to a catalytically active microplasmin. The specific amidolytic activity of microplasmin is about three times higher than Lys77-plasmin on a weight basis and is about the same on a molar basis. The activation of microplasminogen by streptokinase is slower than that of either Glu-plasminogen or Lys77-plasminogen. On the other hand, the activation of microplasminogen by urokinase is faster than that of either of the latter. The Arg560-Val561 bond is cleaved during activation of both microplasminogen and native plasminogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号