首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
W Z Cande 《Cell》1982,28(1):15-22
Permeabilized PtK1 cells continue to undergo anaphase chromosome movements provided MgATP is included in the lysis medium. However, chromosome-to-pole movement (anaphase A) and spindle elongation (anaphase B) differ with respect to nucleotide requirements. The rate of anaphase B depends on the concentration of ATP in the lysis medium; two-thirds the maximal rate is observed in 0.2 mM ATP. However, other nucleotides, such as ITP, CTP and GTP, cannot substitute for ATP. Spindle elongation is blocked by the addition of nonhydrolyzable ATP analogs. ADP, AMP and inhibitors such as vanadate, the magnesium chelator EDTA and sulfhydryl reagents. Anaphase does no require exogenous ATP and is unaffected by these inhibitors. These results are consistent with "dynein-like" ATPase involvement during spindle elongation, and rule out the possibility of tubulin-dynein and actomyosin mechanochemistry during anaphase A. I suggest that chromosome-to-pole movement involves the collapse of an elastic component in the spindle. Force generation could be provided by microtubule depolymerization or by the contraction of a nonmicrotubule microtrabecular lattice.  相似文献   

2.
Chromosome and granule movements in meiotic prophase and prometaphase have been studied by time-lapse cinemicrography in live spermatocytes of the house cricket, Acheta domesticus. Chromosome movements in prophase cells, up to one hour or more before breakdown of the nuclear envelope, are described. These movements are frequent but saltatory; are based mostly at chromosome ends but also at kinetochores; occur in very intimate association with the inside of the nuclear envelope; are directed towards and away from the extranuclear centres (centrioles); tend weakly to accumulate bivalents round the two centres and reach a velocity of 0.65 m/sec. Saltatory movements in granules associated with extranuclear asters are remarkably similar in basic characteristics to the intranuclear chromosome movements. Surprisingly, the chromosome movements (and those of granules) are reversably blocked by colcemid (but not lumi-colcemid), and yet occur in the apparent absence of an intranuclear microtubule array. The movements cease at or shortly after breakdown of the nuclear envelope. However, kinetochore movements in very early prometaphase are similar in velocity and other respects to prophase movements; later prometaphase movements are clearly slower, and those of anaphase very much slower still. — The prophase movements suggest a two component model for motion: a non-microtubule, linear force producer together with microtubules with a skeletal, orientational role. Arguably, both these components are also necessary for chromosome movements in prometaphase and anaphase.This paper is dedicated to Dr. Sally Hughes-Schrader, whose beautiful work in mantids clearly presaged the existence of chromosome movements in late prophase of meiosis; and whose enthusiasm over chromosome movements in general it was my pleasure to share during my stay at Duke.  相似文献   

3.
Chromosome segregation in most animal cells is brought about through two events: the movement of the chromosomes to the poles (anaphase A) and the movement of the poles away from each other (anaphase B). Essential to an understanding of the mechanism of mitosis is information on the relative movements of components of the spindle and identification of sites of subunit loss from shortening microtubules. Through use of tubulin derivatized with X-rhodamine, photobleaching, and digital imaging microscopy of living cells, we directly determined the relative movements of poles, chromosomes, and a marked domain on kinetochore fibers during anaphase. During chromosome movement and pole-pole separation, the marked domain did not move significantly with respect to the near pole. Therefore, the kinetochore microtubules were shortened by the loss of subunits at the kinetochore, although a small amount of subunit loss elsewhere was not excluded. In anaphase A, chromosomes moved on kinetochore microtubules that remained stationary with respect to the near pole. In anaphase B, the kinetochore fiber microtubules accompanied the near pole in its movement away from the opposite pole. These results eliminate models of anaphase in which microtubules are thought to be traction elements that are drawn to and depolymerized at the pole. Our results are compatible with models of anaphase in which the kinetochore fiber microtubules remain anchored at the pole and in which microtubule dynamics are centered at the kinetochore.  相似文献   

4.
5.
Summary The Pac-Man hypothesis suggests that poleward movement of chromosomes during anaphase A is brought about by: disassembly of kinetochore microtubules (MTs) at the kinetochore; generation of the poleward force exclusively at or very close to the kinetochore; and the required energy coming from coupled disassembly of these MTs. This model has become widely accepted and cited as the sole or major mechanism of anaphase A. Rarely acknowledged are several significant phenomena that refute some or all of these postulates. We summarise these anomalies as follows: poleward movement of chromosomes occurring without insertion of any MTs at the kinetochore; anaphase shortening of kinetochore fibres in spindles entirely devoid of chromosomes and, presumably, kinetochores; continued movement of chromosomes while their severed kinetochore stub elongated poleward after treatment with UV microbeams; and fluxing of tubulin subunits through kinetochore MTs during anaphase A, indicating that during anaphase, kinetochore MTs disassemble partly or solely at the poles.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

6.
Quinacrine, an acridine derivative which competitively binds to ATP binding sites, has previously been shown to cause the reorganization of metaphase spindle microtubules (MTs) due to changes in interactions of non-kinetochore microtubules (nkMTs) of opposite polarity (Armstrong and Snyder: Cell Motil. Cytoskeleton 7:10-19, 1987). In the study presented here, mitotic PtK1 cells were treated in early anaphase with concentrations of quinacrine ranging from 2 to 12 microM to determine energy requirements for chromosome motion. The rate and extent of chromosome-to-pole movements (anaphase A) were not affected by these quinacrine treatments. The extent of anaphase B (kinetochore-kinetochore separation) was reduced with increasing concentrations of quinacrine. Five micromolar quinacrine reduced the extent of kinetochore-kinetochore separation by 20%, and addition of 12 microM quinacrine reduced the kinetochore-kinetochore separation by 40%. To determine the role of nkMTs in anaphase spindle elongation, quinacrine-treated metaphase cells were treated with hyperosmotic sucrose concentrations, and spindle elongation was measured (Snyder et al.: Eur J. Cell Biol. 39:373-379, 1985). Metaphase cells treated with 2-10 microM concentrations of quinacrine for 2-5 min reduced spindle lengths by 10-50% prior to 0.5 M sucrose treatment for 5 min. This treatment showed a significant reduction in the ability of sucrose to induce spindle elongation in cells pretreated with quinacrine. As spindle length and birefringence was reduced by quinacrine treatment, sucrose-induced elongation was concomitantly diminished. These data suggest that quinacrine-sensitive linkages are necessary for anaphase B motions. Reduction in these linkages and/or MT length in the nkMT continuum may reduce the ability of the nkMTs to hold compression at metaphase. This form of energy is thought to drive a significant proportion of normal anaphase B in PtK1 cells and sucrose-induced metaphase spindle elongation.  相似文献   

7.
After lysis in a Brij 58-polyethylene glycol medium, PtK1 cells are permeable to small molecules, such as erythrosin B, and to proteins, such as rhodamine-labeled FAB, myosin subfragment-1, and tubulin. Holes are present in the plasma membrane, and the mitochondria are swollen and distorted, but other membrane-bounded organelles of the lysed cell model are not noticeably altered. After lysis, the mitotic apparatus is functional; chromosomes move poleward and the spindle elongates. Cells lysed while in cytokinesis will continue to divide for several minutes. Addition of crude tubulin extracts, MAP-free tubulin, or taxol to the lysis medium retards anaphase chromosome movements but does not affect cleavage. On the other hand, N-ethylmaleimide-modified myosin subfragment-1, phalloidin, and cytochalasin B inhibit cleavage but have no effect on anaphase chromosome movements under identical lysis conditions. These results suggest that actomyosin plays no functional role in anaphase chromosome movement in mammalian tissue culture cells and that microtubule depolymerization is a rate-limiting step for chromosome-to-pole movements.  相似文献   

8.
Mitosis is controlled by the specific and timely degradation of key regulatory proteins, notably the mitotic cyclins that bind and activate the cyclin-dependent kinases (Cdks). In animal cells, cyclin A is always degraded before cyclin B, but the exact timing and the mechanism underlying this are not known. Here we use live cell imaging to show that cyclin A begins to be degraded just after nuclear envelope breakdown. This degradation requires the 26S proteasome, but is not affected by the spindle checkpoint. Neither deletion of its destruction box nor disrupting Cdk binding prevents cyclin A proteolysis, but Cdk binding is necessary for degradation at the correct time. We also show that increasing the levels of cyclin A delays chromosome alignment and sister chromatid segregation. This delay depends on the proteolysis of cyclin A and is not caused by a lag in the bipolar attachment of chromosomes to the mitotic spindle, nor is it mediated via the spindle checkpoint. Thus, proteolysis that is not under the control of the spindle checkpoint is required for chromosome alignment and anaphase.  相似文献   

9.
10.
This work deals with the role of myosin phosphorylation in anaphase chromosome movement. Y27632 and ML7 block two different pathways for phosphorylation of the myosin regulatory light chain (MRLC). Both stopped or slowed chromosome movement when added to anaphase crane-fly spermatocytes. To confirm that the effects of the pharmacological agents were on the presumed targets, we studied cells stained with antibodies against mono- or bi-phosphorylated myosin. For all chromosomes whose movements were affected by a drug, the corresponding spindle fibres of the affected chromosomes had reduced levels of 1P- and 2P-myosin. Thus the drugs acted on the presumed target and myosin phosphorylation is involved in anaphase force production.Calyculin A, an inhibitor of MRLC dephosphorylation, reversed and accelerated the altered movements caused by Y27632 and ML-7, suggesting that another phosphorylation pathway is involved in phosphorylation of spindle myosin. Staurosporine, a more general phosphorylation inhibitor, also reduced the levels of MRLC phosphorylation and caused anaphase chromosomes to stop or slow. The effects of staurosporine on chromosome movements were not reversed by Calyculin A, confirming that another phosphorylation pathway is involved in phosphorylation of spindle myosin.  相似文献   

11.
To investigate the association of calmodulin (CaM) with microtubules (MTs) in the mitotic apparatus (MA), the distributions of both CaM and tubulin were examined in mitotic PtK1 cells in which MT subclasses had been selectively removed or altered by treatment with cold or with the MT inhibitor, nocodazole. A fluorescent CaM conjugate with tetramethylrhodamine isothiocyanate (CaM-TRITC) was microinjected into living cells, and the CaM distribution in the living cell was compared to the distribution of MTs indicated by tubulin immunofluorescence. In cells which had been treated for 2 h at 0 to 4 degrees C or with a low (0.03 micrograms/ml) dose of nocodazole, the only MTs remaining appeared to be kinetochore MTs (kMTs). The distribution of microinjected CaM-TRITC in these cells was indistinguishable from that found in untreated cells and appeared to be colocalized with the kMTs. In cells which were treated with a high (3.0 micrograms/ml) dose of nocodazole, only short MTs remained. When CaM-TRITC was injected into these cells, it formed a somewhat punctate distribution near the chromosomes and, after tubulin immunofluorescence processing, colocalized with what appeared to be remnants of kMTs. We believe that these observations support the hypothesis that CaM exists in the MA in a structural association with kMTs.  相似文献   

12.
13.
An antiserum against tubulin, NS20, was previously shown to specifically attenuate both fast axonal transport in vivo (Johnston, K. M. et al., Brain Res. 385, 38-45 (1986)) and in vitro (Johnston, K. M. et al., Cell Motil. Cytoskel. 7, 110-115 (1987)) and flagellar motility (Goldsmith, M. et al., Cell Motil. Cytoskel. 20, 249-262 (1991)). We hypothesized that NS20 blocked motility by binding to a multifunctional motor binding domain on the microtubules (MTs), or axonemes. Here we have examined the effect of microinjecting NS20, at metaphase, into dividing PtK2 cells. Plotting chromosome separation (CS) as a function of time, we report here that CS rates for anaphase A (chromosome-to-pole movement) were reduced by approximately 50% relative to uninjected controls. CS rates for anaphase B (spindle pole elongation) were unaffected by the NS20 antiserum. The inhibition of CS rate during anaphase A by NS20 was significantly greater than the inhibition caused by a control antitubulin serum (PC5). Two possible mechanisms underlying NS20's inhibition of CS during anaphase A were considered. NS20 could block the binding of a kinetochore-associated motor to kinetochore MTs (kMTs) or, alternatively, NS20 could stabilize kMTs against depolymerization. Our results favor the first alternative. In a cold-induced depolymerization assay, NS20 had no selective stabilizing effect on MTs. Moreover, we show that NS20 can selectively block the binding of a well characterized MT-associated motor (kinesin) to MTs, in vitro. These results suggest that NS20 may be defining a unique tubulin binding domain common to the motors underlying vesicle transport, flagellar motility, and chromosome movements during anaphase A.  相似文献   

14.
Summary The present investigation has been undertaken to obtain data for the analysis of the chromosome movement at anaphase and the formation of a cleavage furrow. The study is based on simultaneous measurements of the spindle and cell diameters as well as of the chromosome separation in living spermatocyte divisions of the grasshoppers, Podisma sapporense and Acrydium japonicum.Evidence from the present investigation shows that the movement of chromosomes to the poles and the elongation of the spindle are separated in time; the spindle length remains unchanged through out anaphase. Spindle elongation is not associated with the separation of daughter chromosomes. The cell, and the spindle as well, elongate after the chromosomes have reached the poles. Cell elongation may follow the stretching of the spindle, and cause sufficient tension to distort the cell wall, resulting in the subsequent formation of a cleavage furrow.Contribution No. 327 from the Zoological Institute, Faculty of Science, Hokkaido University, Sapporo, Japan. Aided by a grant from the Scientific Research Fund of the Ministry of Education.  相似文献   

15.
16.
Src family tyrosine kinases (SFKs) participate in mitotic signal transduction events, including mitotic entry, cleavage furrow ingression, and cytokinesis abscission. Although SFKs have been shown to associate with the mitotic spindle, the role of SFKs in mitotic spindle formation remains unclear. Here, we show that c-Src promotes proper spindle orientation in early prometaphase. Src localizes close to spindle poles in a manner independent of Src kinase activity. Three-dimensional analyses showed that Src inhibition induced spindle misorientation, exhibiting a tilting spindle in early prometaphase. Spindle misorientation is frequently seen in SYF cells, which harbor triple knock-out mutations of c-Src, c-Yes, and Fyn, and reintroduction of c-Src but not Fyn into SYF cells rescued spindle misorientation. Spindle misorientation was also observed upon Src inhibition under conditions in which Aurora B was inhibited. Inducible expression of c-Src promoted a properly oriented bipolar spindle, which was suppressed by Src inhibition. Aster formation was severely inhibited in SYF cells upon Aurora B inhibition, which was rescued by reintroduction of c-Src into SYF cells. Furthermore, reintroduction of c-Src facilitated microtubule regrowth from cold-induced depolymerization and accelerated M phase progression. These results suggest that c-Src is involved in spindle orientation through centrosome-mediated aster formation.  相似文献   

17.
2,5-hexanedione (2,5HD) induces focal accumulation of neurofilaments in nerve axons and juxtanuclear aggregation of vimentin-intermediate filaments (vimentin-IF) in cultured human skin fibroblasts. It has been postulated that 2,5HD prevents the cross-filament associations of intermediate filaments (IF) with microtubules which are required for their transport. If this is true, only subclasses of IF which depend on microtubules for their cellular distribution should be affected by 2,5HD-treatment and the aggregates formed should resemble the juxtanuclear coils which form following dissolution of microtubules by colchicine. We have tested this hypothesis in PtK1 cells which contain two separate networks of IF: vimentin-IF which aggregate in the presence of colchicine, and keratin-filaments (keratin-IF) whose distribution is not altered by depolymerization of microtubules. Treatment of confluent monolayers of PtK1 cells with 2,5HD (4 to 6 mM for 14 to 21 days) induced aggregates of vimentin-IF which resembled those induced by colchicine (5 X 10(-6)M for 48 hours), but had no effect on the distribution of keratin-IF.  相似文献   

18.
To investigate whether myosin is involved in crane-fly primary spermatocyte division, we studied the effects of myosin inhibitors on chromosome movement and on cytokinesis. With respect to chromosome movement, the myosin ATPase inhibitor 2,3-butanedione 2-monoxime (BDM) added during autosomal anaphase reversibly perturbed the movements of all autosomes: autosomes stopped, slowed, or moved backwards during treatment. BDM added before anaphase onset altered chromosome movement less than when BDM was added during anaphase: chromosome movements only rarely were stopped. They often were normal initially and then, if altered at all, were slowed. To confirm that the effects of BDM were due to myosin inhibition, we treated cells with ML-7, a drug that inhibits myosin light chain kinase (MLCK), an enzyme necessary to activate myosin. ML-7 affected anaphase movement only when added in early prometaphase: this treatment prevented chromosome attachment to the spindle. We treated cells with H-7 as a control for possible non-myosin effects of ML-7. H-7, which has a lower affinity than ML-7 for MLCK but a higher affinity than ML-7 for other potential targets, had no effect. These data confirm that the BDM effect is on myosin and indicate that the myosin used for chromosome movement is activated near the start of prometaphase. With respect to cytokinesis, BDM did not block furrow initiation but did block subsequent contraction of the contractile ring. When BDM was added after initiation of the furrow, the contractile ring either stalled or relaxed. ML-7 blocked contractile ring contraction when added at all stages after autosomal anaphase onset, including when added during cytokinesis. H-7 had no effect. These results confirm that the effects of BDM are on myosin and indicate that the myosin used for cytokinesis is activated starting from autosomal anaphase and continuing throughout cytokinesis.  相似文献   

19.
Protein kinase CK2 has traditionally been described as a stable heterotetrameric complex (α < eqid1 > β2) but new approaches that effectively capture the dynamic behavior of proteins, are bringing a new picture of this complex into focus. To track the spatio-temporal dynamics of CK2 in living cells, we fused its catalytic α and regulatory β subunits with GFP and analog proteins. Beside the mostly nuclear localization of both subunits, and the identification of specific domains on each subunit that triggers their localization, the most significant finding was that the association of both CK2 subunits in a stable tetrameric holoenzyme eliminates their nuclear import (Mol Cell Biol {23}: 975–987, 2003). Molecular movements of both subunits in the cytoplasm and in the nucleus were analyzed using different new and updated fluorescence imaging methods such as: fluorescence recovery after photo bleaching (FRAP), fluorescence loss in photo bleaching (FLIP), fluorescence correlation spectroscopy (FCS), and photoactivation using a biphoton microscope. These fluorescence-imaging techniques provide unprecedented ways to visualize and quantify the mobility of each individual CK2 subunit with high spatial and temporal resolution. Visualization of CK2 heterotetrameric complex formation could also be recorded using the fluorescence resonance energy transfer (FRET) technique. FRET imaging revealed that the assembling of this molecular complex can take place both in the cytoplasmic and nuclear compartments. The spatio–temporal organization of individual CK2 subunits and their dynamic behavior remain now to be correlated with the functioning of this kinase in the complex environment of the cell.  相似文献   

20.
Prometaphase I chromosome behavior was examined in wild-type Drosophila melanogaster primary spermatocytes. Cine analysis of live cells reveals that bivalents exhibit complex motions that include (1) transient bipolar orientations, (2) simultaneous reorientation of homologous kinetochores, (3) movements not parallel to the spindle axis, and (4) movement along the nuclear membrane. — Kinetochores and kinetochore microtubule have been analyzed for bivalents previously studied in life. The results suggest that most chromosome motions (complex though they may be) can be explained by poleward forces acting on or through kinetochore microtubules that span the distance between the kinetochore and the vicinity of a pole. The results also suggest that the majority of short kinetochore microtubules may be remnants of previous microtubule-mediated associations between a kinetochore and a pole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号