首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The transsulfuration pathways allow the interconversion of homocysteine and cysteine with the intermediary formation of cystathionine. The various organisms studied up to now incorporate reduced sulfur into a three- or a four-carbon chain and use differently the transsulfuration pathways to synthesize sulfur amino acids. In enteric bacteria, the synthesis of cysteine is the first step of organic sulfur metabolism and homocysteine is derived from cysteine. Fungi are capable of incorporating reduced sulfur into a four-carbon chain, and they possess two operating transsulfuration pathways. By contrast, synthesis of cysteine from homocysteine is the only existing transsulfuration pathway in mammals. In Saccharomyces cerevisiae, genetic, phenotypic, and enzymatic study of mutants has allowed us to demonstrate that homocysteine is the first sulfur amino acid to be synthesized and cysteine is derived only from homocysteine (H. Cherest and Y. Surdin-Kerjan, Genetics 130:51-58, 1992). We report here the cloning of genes STR4 and STR1, encoding cystathionine beta-synthase and cystathionine gamma-lyase, respectively. The only phenotypic consequence of the inactivation of STR1 or STR4 is cysteine auxotrophy. The sequencing of gene STR4 has allowed us to compare all of the known sequences of transsulfuration enzymes and enzymes catalyzing the incorporation of reduced sulfur in carbon chains. These comparisons reveal a partition into two families based on sequence motifs. This partition mainly correlates with similarities in the catalytic mechanisms of these enzymes.  相似文献   

2.
3.
Cystathionine accumulation in Saccharomyces cerevisiae.   总被引:6,自引:3,他引:3       下载免费PDF全文
A cysteine-dependent strain of Saccharomyces cerevisiae and its prototrophic revertants accumulated cystathionine in cells. The cystathionine accumulation was caused by a single mutation having a high incidence of gene conversion. The mutation was designated cys3 and was shown to cause loss of gamma-cystathionase activity. Cysteine dependence of the initial strain was determined by two linked and interacting mutations, cys3 and cys1 . Since cys1 mutations cause a loss of serine acetyltransferase activity, our observation led to the conclusion that S. cerevisiae synthesizes cysteine by sulfhydrylation of serine with hydrogen sulfide and by cleavage of cystathionine which is synthesized from serine and homocysteine.  相似文献   

4.
The cys2-1 mutation of Saccharomyces cerevisiae was originally thought to confer cysteine dependence through a serine O-acetyltransferase deficiency. In this study, we show that cys2-1 strains lack not only serine O-acetyltransferase but also cystathionine beta-synthase. However, a prototrophic strain was found to be serine O-acetyltransferase deficient because of a mutation allelic to cys2-1. Moreover, revertants obtained from cys2-1 strains had serine O-acetyltransferase but not cystathionine beta-synthase, whereas transformants obtained by treating a cys2-1 strain with an S. cerevisiae genomic library had cystathionine beta-synthase but not serine O-acetyltransferase. From these observations, we conclude that cys2-1 (serine O-acetyltransferase deficiency) accompanies a very closely linked mutation that causes cystathionine beta-synthase deficiency and that these mutations together confer cysteine dependence. This newly identified mutation is named cys4-1. These results not only support our previous hypothesis that S. cerevisiae has two functional cysteine biosynthetic pathways but also reveal an interesting gene arrangement of the cysteine biosynthetic system.  相似文献   

5.
The role of cystathionine in methionine biosynthesis in wild-type and auxotrophic strains of Saccharomyces cerevisiae was studied. Homocysteine and cysteinerequiring mutants were selected for detailed study. Exogenously supplied cystathionine, although actively transported by all strains tested, could not satisfy the organic sulfur requirements of the mutants. Cell-free extracts of the wild-type, homocysteine, and cysteine auxotrophs were shown to cleave cystathionine. Pyruvic acid and homocysteine were identified as teh products of this cleavage. A mutant containing an enzyme which could cleave cystathionine to homocysteine in cell-free experiments was unable to use cystathionine as a methionine precursor in the intact organisms. The significance of this finding is discussed.  相似文献   

6.
Mutations were found which enable Escherichia coli K-12 to form homocysteine in the absence of cystathionase. The formation of homocysteine in the mutant strains required cystathionine gamma-synthetase, the metB gene product, but bypassed the normal intermediate cystathionine. It is concluded that cystathionine gamma-synthetase catalyzes the formation of homocysteine directly from O-succinylhomoserine and an as-yet-unidentified sulfur donor. The mutation apparently causes the formation of this sulfur donor and has been named metQ. The expression of the metQ gene is under catabolite repression.  相似文献   

7.
The incorporation of the sulfur atom of 35S-labeled amino acids into thiamin in Escherichia coli and Saccharomyces cerevisiae was studied. The specific radioactivity of the S atoms was incorporated at similar levels into thiamin and cysteine residues in cell proteins. However, the specific radioactivity of the S atoms from [35S]methionine was not incorporated into thiamin but into methionine residues in cell proteins. Thus, the origin of the S atom of thiamin was established as being the S atom of cysteine. No activity from [U-14C]cysteine was recovered in thiamin, proving that the carbon skeleton of this amino acid was not utilized in synthesizing the thiazole moiety of thiamin.  相似文献   

8.
Abstract The fission yeast Schizosaccharomyces pombe has a unique organization of sulfur amino acid metabolism: it has two distinct O -acetylhomoserine sulfhydrylases (homocysteine synthases). Similar to Enterobacteriaceae, S. pombe lacks cystathionine β-synthase and cystathionine γ-lyase - the enzymes of the reverse transsulfuration pathway, by which methionine is readily metabolized to cysteine - a likely effector in the sulfur metabolite repression system. Consequently no repression of sulfate assimilation is observed when methionine is added to the growth medium.  相似文献   

9.
Sulfurtransferases (STRs) catalyze the transfer of a sulfur atom from a donor to a suitable acceptor molecule. The Arabidopsis thaliana genome encodes 20 putative STR proteins. The biological functions of most are unclear. We found that STR1 and STR2 play important roles in embryo/seed development. Mutation of STR1 alone resulted in a shrunken seed phenotype, although growth and development of vegetative and reproductive organs were not affected. The shrunken seed phenotype was associated with the delayed/arrested embryo development, in most cases, at the heart stage. The embryo defect of str1 mutant is not fully penetrant. Approximately 12.5% of embryos developed further and formed normal looking seeds. In severely shrunken seeds, no embryo could be identified after seed collection. Partially shrunken seeds that contained viable embryos could still germinate. However, cotyledons of the seedlings from such seeds were abnormal. An STR1-GUS fusion reporter revealed that the STR1 gene was universally expressed, with high levels of expression in specific tissues/organs including embryos. The incomplete penetrance of str1 embryo/seed phenotype is a result of functional STR2. Single str2 mutant had no phenotype. However, no str1(-/-)/str2(-/-) double mutant embryos were able to develop past the heart stage. Furthermore, STR2 is haplo-insufficient in str1 mutant background, and str1(-/-)/str2(+/-) embryos were 100% lethal. These data provide new insights into the biological functions of the ubiquitous sulfurtransferase in Arabidopsis embryogenesis and seed development.  相似文献   

10.
A cell extract of an extremely thermophilic bacterium, Thermus thermophilus HB8, cultured in a synthetic medium catalyzed cystathionine gamma-synthesis with O-acetyl-L-homoserine and L-cysteine as substrates but not beta-synthesis with DL-homocysteine and L-serine (or O-acetyl-L-serine). The amounts of synthesized enzymes metabolizing sulfur-containing amino acids were estimated by determining their catalytic activities in cell extracts. The syntheses of cystathionine beta-lyase (EC 4.4.1.8) and O-acetyl-L-serine sulfhydrylase (EC 4.2.99.8) were markedly repressed by L-methionine supplemented to the medium. L-Cysteine and glutathione, both at 0.5 mM, added to the medium as the sole sulfur source repressed the synthesis of O-acetylserine sulfhydrylase by 55 and 73%, respectively, confirming that this enzyme functions as a cysteine synthase. Methionine employed at 1 to 5 mM in the same way derepressed the synthesis of O-acetylserine sulfhydrylase 2.1- to 2.5-fold. A method for assaying a low concentration of sulfide (0.01 to 0.05 mM) liberated from homocysteine by determining cysteine synthesized with it in the presence of excess amounts of O-acetylserine and a purified preparation of the sulfhydrylase was established. The extract of cells catalyzed the homocysteine gamma-lyase reaction, with a specific activity of 5 to 7 nmol/min/mg of protein, but not the methionine gamma-lyase reaction. These results suggested that cysteine was also synthesized under the conditions employed by the catalysis of O-acetylserine sulfhydrylase using sulfur of homocysteine derived from methionine. Methionine inhibited O-acetylserine sulfhydrylase markedly. The effects of sulfur sources added to the medium on the synthesis of O-acetylhomoserine sulfhydrylase and the inhibition of the enzyme activity by methionine were mostly understood by assuming that the organism has two proteins having O-acetylhomoserine sulfhydrylase activity, one of which is cystathionine gamma-synthase. Although it has been reported that homocysteine is directly synthesized in T. thermophilus HB27 by the catalysis of O-acetylhomoserine sulfhydrylase on the basis of genetic studies (T. Kosuge, D. Gao, and T. Hoshino, J. Biosci. Bioeng. 90:271-279, 2000), the results obtained in this study for the behaviors of related enzymes indicate that sulfur is first incorporated into cysteine and then transferred to homocysteine via cystathionine in T. thermophilus HB8.  相似文献   

11.
The assimilation of sulphate in Saccharomyces cerevisiae, comprising the reduction of sulphate to sulphide and the incorporation of the sulphur atom into a four-carbon chain, requires the integrity of 13 different genes. To date, the functions of nine of these genes are still not clearly established. A set of strains, each bearing a mutation in one MET gene, was studied. Phenotypic studies and enzyme determinations showed that the products of at least five genes are needed for the synthesis of an enzymically active sulphite reductase. These genes are MET1, MET5, MET8, MET10 and MET20. Wild-type strains of S. cerevisiae can use organic metabolites such as homocysteine, cysteine, methionine and S-adenosylmethionine as sulphur sources. They are also able to use inorganic sulphur sources such as sulphate, sulphite, sulphide or thiosulphate. Here we show that both of the two sulphur atoms of thiosulphate are used by S. cerevisiae. Thiosulphate is cleaved into sulphite and sulphide prior to utilization by the sulphate assimilation pathway, as the metabolism of one sulphur atom from thiosulphate requires the presence of an active sulphite reductase.  相似文献   

12.
The trans -sulfuration pathways allow the interconversion of cysteine and methionine with the intermediary formation of cystathionine and homocysteine. The genome database of Lactobacillus casei ATCC 334 provides evidence that this species cannot synthesize cysteine from methionine via the trans -sulfuration pathway. However, several L. casei strains use methionine as the sole sulfur source, which implies that these strains can convert methionine to cysteine. Cystathionine synthases and lyases play a crucial role in the trans -sulfuration pathway. By applying proteomic techniques, we have identified a protein in cell-free extracts of L. casei , which showed high homology to a gene product encoded in the genome of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus and Lactobacillus helveticus but not in the genome of L. casei ATCC 334. The presence of the gene was only found in strains able to grow on methionine as the sole sulfur source. Moreover, two gene variants were identified. Both gene variants were cloned and expressed heterologously in Escherichia coli . The recombinant enzymes exhibited cystathionine lyase activity in vitro and also cleaved cysteine, homocysteine and methionine releasing volatile sulfur compounds.  相似文献   

13.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5beta-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

14.
By screening a yeast genomic library, we isolated and characterized a gene rescuing the cysteine requirement in a "cys1" strain of Saccharomyces cerevisiae. Except for four residues in the open reading frame composed of 1,182 nucleotides, the DNA sequence was the same as that for the CYS3 (CYI1) gene, encoding cystathionine gamma-lyase (EC 4.4.1.1), and isolated previously as a cycloheximide-induced gene (B. Ono, K. Tanaka, K. Naito, C. Heike, S. Shinoda, S. Yamamoto, S. Ohmori, T. Oshima, and A. Toh-e, J. Bacteriol. 174:pp.3339-3347, 1992). S. cerevisiae "cys1" strains carry two closely linked mutations; one (cys1) causes a defect in serine O-acetyltransferase (EC 2.3.1.30), and another, designated cys3, impairs cystathionine gamma-lyase activity. Rescue of the cysteine requirement by the gene encoding cystathionine gamma-lyase is consistent with both defects being responsible for the cysteine auxotrophy. In an effort to further determine the physicochemical and enzymatic properties of this enzyme, a coding fragment was cloned into an Escherichia coli expression plasmid, and the protein was produced in the bacteria. The induced protein was extracted by sonication and purified to homogeneity through one course of DEAE-cellulose column chromatography. The yield of the protein was approximately 150 mg from cells cultured in 1 liter of L broth. The protein showed molecular weights of approximately 194,000 and 48,000 (for the subunit), suggesting a tetrameric structure. An s20,w value of 8.8 was estimated by centrifugation in a sucrose concentration gradient. No sulfhydryl groups were detected, which is consistent with the absence of cysteine residues in the coding sequence. The isoelectric point was at pH 5.2. The protein showed a number of cystathionine-related activities, i.e., cystathionine beta-lyase (EC 4.4.1.8), cystathionine gamma-lyase, and cystathionine gamma-synthase (EC 4.2.99.9) with L-homoserine as substrate. In addition, we demonstrated L-homoserine sulfhydrylase (adding H2S) activity but could find no detectable serine O-acteyltransferease activity. In this paper, we compare the enzymatic properties of the protein with those of homologous enzymes previously reported and discuss the possibility that this enzyme has a physiological role as cystathionine Beta-lyase and cystathionine gamma-synthase in addition to its previously described role as cystathionine gamma-lyase.  相似文献   

15.
16.
Enzymes implicated in cysteine and methionine metabolism such as cystathionine β‐lyase (CBL; EC 4.4.1.8), a pyridoxal‐5′‐phosphate (PLP)‐dependent carbon–sulfur lyase, have been shown to play a central role in the generation of sulfur compounds. This work describes the unprecedented cloning and characterization of the metC‐cystathionine β‐lyase from the axillary‐isolated strain Staphylococcus haemolyticus AX3, in order to determine its activity and its involvement in amino acid biosynthesis, and in the generation of sulfur compounds in human sweat. The gene contains a cysteine/methionine metabolism enzyme pattern, and also a sequence capable to effect β‐elimination. The recombinant enzyme was shown to cleave cystathionine into homocysteine and to convert methionine into methanethiol at low levels. No odor was generated after incubation of the recombinant enzyme with sterile human axillary secretions; sweat components were found to have an inhibitory effect. These results suggest that the generation of sulfur compounds by Staphylococci and the β‐lyase activity in human sweat are mediated by enzymes other than the metC gene or by the concerted activities of more than one enzyme.  相似文献   

17.
Metabolism of various sulfur compounds in Bacillus subtilis during growth and sporulation was investigated by use of tracer techniques, in an attempt to clarify the mechanism involved in the formation of cystine rich protein of the spore coat.

Methionine, homocysteine, cystathionine, cysteine and some inorganic sulfur compounds (sulfate, sulfite and thiosulfate) were utilized by this organism as sulfur sources for its growth and sporulation. Biosynthesis of methionine from sulfate during growth was more or less inhibited by the addition of cysteine, homocysteine or cystathionine to the culture.

It is suggested from these results that in Bacillus subtilis methionine is synthesized from sulfate through cysteine, cystathionine and homocysteine as is the case in Salmonella or Neurospora. The results also suggest that the metabolism of sulfur-containing amino acids in Bacillus subtilis is strongly regulated by methionine and homocysteine.  相似文献   

18.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5β-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

19.
In most bacteria, inorganic sulfur is assimilated into cysteine, which provides sulfur for methionine biosynthesis via transsulfurylation. Here, cysteine is transferred to the terminal carbon of homoserine via its sulfhydryl group to form cystathionine, which is cleaved to yield homocysteine. In the enteric bacteria Escherichia coli and Salmonella enterica, these reactions are catalyzed by irreversible cystathionine-gamma-synthase and cystathionine-beta-lyase enzymes. Alternatively, yeast and some bacteria assimilate sulfur into homocysteine, which serves as a sulfhydryl group donor in the synthesis of cysteine by reverse transsulfurylation with a cystathionine-beta-synthase and cystathionine-gamma-lyase. Herein we report that the related enteric bacterium Klebsiella pneumoniae encodes genes for both transsulfurylation pathways; genetic and biochemical analyses show that they are coordinately regulated to prevent futile cycling. Klebsiella uses reverse transsulfurylation to recycle methionine to cysteine during periods of sulfate starvation. This methionine-to-cysteine (mtc) transsulfurylation pathway is activated by cysteine starvation via the CysB protein, by adenosyl-phosphosulfate starvation via the Cbl protein, and by methionine excess via the MetJ protein. While mtc mutants cannot use methionine as a sulfur source on solid medium, they will utilize methionine in liquid medium via a sulfide intermediate, suggesting that an additional nontranssulfurylation methionine-to-cysteine recycling pathway(s) operates under these conditions.  相似文献   

20.
A DNA fragment containing the Saccharomyces cerevisiae CYS3 (CYI1) gene was cloned. The clone had a single open reading frame of 1,182 bp (394 amino acid residues). By comparison of the deduced amino acid sequence with the N-terminal amino acid sequence of cystathionine gamma-lyase, CYS3 (CYI1) was concluded to be the structural gene for this enzyme. In addition, the deduced sequence showed homology with the following enzymes: rat cystathionine gamma-lyase (41%), Escherichia coli cystathionine gamma-synthase (36%), and cystathionine beta-lyase (25%). The N-terminal half of it was homologous (39%) with the N-terminal half of S. cerevisiae O-acetylserine and O-acetylhomoserine sulfhydrylase. The cloned CYS3 (CYI1) gene marginally complemented the E. coli metB mutation (cystathionine gamma-synthase deficiency) and conferred cystathionine gamma-synthase activity as well as cystathionine gamma-lyase activity to E. coli; cystathionine gamma-synthase activity was detected when O-succinylhomoserine but not O-acetylhomoserine was used as substrate. We therefore conclude that S. cerevisiae cystathionine gamma-lyase and E. coli cystathionine gamma-synthase are homologous in both structure and in vitro function and propose that their different in vivo functions are due to the unavailability of O-succinylhomoserine in S. cerevisiae and the scarceness of cystathionine in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号