首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the temporal relationship between hepatic glycogen depletion and cardiac and hepatic PDH (pyruvate dehydrogenase complex) activities during the acute phase of starvation. There was a striking correlation between the decline in hepatic glycogen and PDH inactivation during the first 10 h of starvation. Re-feeding after 6 h starvation was associated with complete re-activation of PDH in liver and re-activation to approx. 75% of the fed value in heart, whereas in rats previously starved for 24-48 h re-activation was delayed in liver and diminished in heart. The results are discussed with reference to the fate of dietary carbohydrate after re-feeding.  相似文献   

2.
We investigated the capacity for pyruvate oxidation in skeletal muscle, diaphragm and heart after starvation and re-feeding. Starvation for 48 h decreased pyruvate dehydrogenase (PDH) activity in soleus (by 47%), extensor digitorum longus (64%), gastrocnemius (86%), diaphragm (87%), adductor longus (90%), tibialis anterior (92%) and heart (99%). Chow re-feeding increased PDH activity in all muscles to 43-78% of the fed value within 2 h. However, complete re-activation was not observed for at least 4-6 h, during which time hepatic glycogen was replenished. We discuss the importance of muscle PDH activity in relation to sparing carbohydrate for hepatic glycogen synthesis.  相似文献   

3.
The work investigated the mechanisms for modulation of renal and hepatic pyruvate dehydrogenase complex (PDH) activities after carbohydrate re-feeding of 48 h-starved rats, and identified a regulatory role for tri-iodothyronine. Glucose re-feeding decreased blood concentrations of lipid fuels in both euthyroid and hyperthyroid rats. This treatment was not associated with re-activation of hepatic PDH in either group of rats, or of renal PDH in hyperthyroid rats (where activity was already high), but it increased renal PDH in euthyroid rats. Dichloroacetate (DCA), an activator of PDH kinase, increased renal PDH activities in euthyroid rats, but not hyperthyroid rats, and effects of glucose re-feeding or hyperthyroidism were no longer apparent. These treatments therefore exert their effects on renal PDH through changes in PDH kinase. DCA re-activation of hepatic PDH was more marked in hyperthyroid than in euthyroid rats, suggesting that, under conditions of inhibited kinase activity, PDH phosphatase is more active in livers of hyperthyroid rats. The limited effect of DCA on hepatic PDH in euthyroid rats was potentiated by glucose re-feeding or insulin, but not by inhibition of lipolysis, demonstrating a direct effect of insulin to increase hepatic PDH phosphatase. Glucose re-feeding, inhibition of lipolysis or insulin administration did not increase hepatic PDH in DCA-treated hyperthyroid rats, indicating that effects of hyperthyroidism and of insulin on PDH phosphatase are not additive.  相似文献   

4.
Budde RJ  Randall DD 《Plant physiology》1988,88(4):1026-1030
The requirements for reactivation (dephosphorylation) of the pea (Pisum sativum L.) leaf mitochondrial pyruvate dehydrogenase complex (PDC) were studied in terms of magnesium and ATP effects with intact and permeabilized mitochondria. The requirement for high concentrations of magnesium for reactivation previously reported with partially purified PDC is shown to affect inactivation rather than reactivation. The observed rate of inactivation catalyzed by pyruvate dehydrogenase (PDH) kinase is always greater than the reactivation rate catalyzed by PDH-P phosphatase. Thus, reactivation would only occur if ATP becomes limiting. However, pyruvate which is a potent inhibitor of inactivation in the presence of thiamine pyrophosphate, results in increased PDC activity. Analysis of the dynamics of the phosphorylation-dephosphorylation cycle indicated that the covalent modification was under steady state control. The steady state activity of PDC was increased by addition of pyruvate. PDH kinase activity increased threefold during storage of mitochondria suggesting that there may be an unknown level of regulation exerted on the enzyme complex.  相似文献   

5.
The increased activity of pyruvate dehydrogenase (PDH) kinase induced in hearts of rats by starvation for 48 h was maintained following preparation of cardiac myocytes, and it was also maintained, though at a decreased level, after 25 h of culture in medium 199. This loss of PDH kinase activity was not prevented by n-octanoate, dibutyryl cyclic AMP or glucagon. The PDH kinase activity of myocytes from fed rats was increased to that of starved rats after 25 h of culture with n-octanoate, dibutyryl cyclic AMP or both agents together.  相似文献   

6.
The total activity of pyruvate dehydrogenase (PDH) complex in rat hind-limb muscle mitochondria was 76.4 units/g of mitochondrial protein. The proportion of complex in the active form was 34% (as isolated), 8-14% (incubation with respiratory substrates) and greater than 98% (incubation without respiratory substrates). Complex was also inactivated by ATP in the presence of oligomycin B and carbonyl cyanide m-chlorophenylhydrazone. Ca2+ (which activates PDH phosphatase) and pyruvate or dichloroacetate (which inhibit PDH kinase) each increased the concentration of active PDH complex in a concentration-dependent manner in mitochondria oxidizing 2-oxoglutarate/L-malate. Values giving half-maximal activation were 10 nM-Ca2+, 3 mM-pyruvate and 16 microM-dichloroacetate. Activation by Ca2+ was inhibited by Na+ and Mg2+. Mitochondria incubated with [32P]Pi/2-oxoglutarate/L-malate incorporated 32P into three phosphorylation sites in the alpha-chain of PDH; relative rates of phosphorylation were sites 1 greater than 2 greater than 3, and of dephosphorylation, sites 2 greater than 1 greater than 3. Starvation ( 48h ) or induction of alloxan-diabetes had no effect on the total activity of PDH complex in skeletal-muscle mitochondria, but each decreased the concentration of active complex in mitochondria oxidizing 2-oxoglutarate/L-malate and increased the concentrations of Ca2+, pyruvate or dichloracetate required for half-maximal reactivation. In extracts of mitochondria the activity of PDH kinase was increased 2-3-fold by 48 h starvation or alloxan-diabetes, but the activity of PDH phosphatase was unchanged.  相似文献   

7.
The effects of two different classes of calmodulin antagonists on the catalytic activities of purified pyruvate dehydrogenase (PDH) phosphatase and PDH complex (PDC) were studied. In general, PDH phosphatase was more strongly inhibited than PDC by the calmodulin antagonists with the following potency order: fluphenazine > chlorpromazine > thioridazine > triflupromazine. Promazine and two sulfonamides (W-5 and W-7) did not suppress PDH phosphatase activity at 1 mM concentrations, while about 20% of PDC activity was inhibited by these antagonists. Fluphenazine-mediated inhibition of PDH phosphatase was observed with the purified PDC as well as intact mitochondria. Although Ca2+ stimulates PDH phosphatase activity, the addition of exogenous Ca2+ did not overcome the inhibition by calmodulin antagonists. These results suggest that the suppression of PDH phosphatase activity is dependent upon the structure of the individual calmodulin antagonist and appears to be Ca(2+)-independent. Kinetic analysis showed a noncompetitive inhibition of PDH phosphatase by fluphenazine, indicating that it binds to different site(s) from the catalytic site of the enzyme.  相似文献   

8.
Starvation of rats for 48 h increased the activity of PDH (pyruvate dehydrogenase) kinase 2.2-fold in extracts of liver mitochondria, 2.9-fold in PDH complex partially purified therefrom by fractional precipitation, and 5-fold in PDH complex partially purified by gel filtration on Sephacryl S-300. A protein fraction was separated from PDH complex in extracts of rat liver mitochondria by gel filtration or fractional precipitation, which increased the activity of PDH kinase in rat liver and pig heart PDH complexes. The activity of this protein fraction was increased approx. 2.5-fold by 48 h starvation of rats. With highly purified pig heart PDH complex it was shown that the protein fraction increased the Vmax. of the PDH kinase reaction 35-fold (fraction from fed rats) or 82-fold (fraction from starved rats); starvation had no effect on the concentration of protein fraction required to give 0.5 Vmax. Evidence is given that the increase in PDH kinase activity effected in extracts of liver mitochondria by starvation is due to increased activity of kinase activator protein, which is tightly bound by rat liver PDH complex and not removed by a single gel filtration. With pig heart PDH complex, increased PDH kinase activity was retained after gel filtration of an admixture with kinase activator protein from starved rats, but was restored to the control value by a second gel filtration; the alterations in PDH kinase activity were associated with obvious changes in protein bands in SDS gels.  相似文献   

9.
The proportion of pyruvate dehydrogenase (PDH) complex in the active dephosphorylated form was decreased (compared with fed lean control mice) in heart muscle mitochondria after the induction of obesity with gold-thioglucose (by 54%) or starvation of lean mice for 48 h (by 81%). The effects of obesity to inactivate PDH complex were demonstrable 4 weeks after administration of gold-thioglucose, and occurred despite significant hyperinsulinaemia in obese animals. Phosphorylation and inactivation of PDH complex in mouse heart muscle in starvation was attributed to a stable increase (2.7-fold) in the activity of PDH kinase as measured in extracts of mitochondria mediated by increased specific activity of a protein activator of PDH kinase (KAP) [Denyer, Kerbey & Randle (1986) Biochem. J. 239, 347-354]. In obese mice no such increase in kinase activity was observed, and we conclude that phosphorylation and inactivation of PDH complex in heart muscle in obesity is not mediated by KAP, but rather is a consequence of increased lipid oxidation.  相似文献   

10.
The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.  相似文献   

11.
In tissue culture of hepatocytes, insulin (0.1-1 munits/ml for 4 h) reversed completely the effects of starvation of rats to decrease the activity of pyruvate dehydrogenase (PDH) complex and to increase the activities of PDH kinase and PDH kinase activator protein. It had no effect in hepatocytes from fed rats. Significant effects of insulin were detected with 0.01 munit/ml after 4 h, and in 1-2 h with 1 munit/ml.  相似文献   

12.
Starvation increased pyruvate dehydrogenase (PDH) kinase activity in extracts of freshly excised rat soleus 2.2-fold (from 0.6 min-1 in fed rats to 1.31 min-1 in 48-h-starved rats). In fed rats, activities were unchanged following 24 h of culture in medium 199, but increased 2.1-fold on 24 h of culture with 50 microM dibutyryl cAMP plus 1 mM n-octanoate and 1.6-1.7-fold with either agent alone. Approx. 70% of the increase in PDH kinase induced by starvation was lost following 24 h of culture in medium 199; the loss was prevented by 50 microM dibutyryl cAMP plus 1 mM n-octanoate. cAMP concentrations in fresh soleus muscle were 1 nmol/g (fed rats) and 1.6 nmol/g (starved rats). After 20-60 min of culture the fed-starved difference disappeared and [cAMP] fell to 0.4 nmol/g. Calcitonin-gene-related peptide (CGRP) increased cAMP 3-fold; the increase was maintained throughout 24 h of culture, but was readily reversed at 30 min or 24 h of culture by 60-min incubation with CGRP-free medium. Starvation of the rat (48 h) had no effect on the sensitivity of soleus towards the [cAMP]-increasing effect of CGRP. It is concluded that culture may reverse effects of starvation on PDH kinase activity by lowering cAMP and by removal from the in vivo effects of circulating free fatty acids; and that starvation and CGRP had no detectable long-term effects on the cAMP system in soleus muscle.  相似文献   

13.
Function of the nonidentical subunits of mammalian pyruvate dehydrogenase   总被引:7,自引:0,他引:7  
The pyruvate dehydrogenase (PDH) component of the bovine kidney pyruvate dehydrogenase complex (PDC) contains two nonidentical subunits. PDH catalyzes the decarboxylation of pyruvate to produce α-hydroxyethylthiamine-PP (HETPP) and the reductive acetylation of the lipoyl moieties of dihydrolipoyl transacetylase with HETPP. Phosphorylation of PDH with PDH kinase and ATP markedly inhibits the first reaction but does not inhibit the second reaction. Since the α-subunit but not the β-subunit of PDH undergoes phosphorylation, these results suggest that the α-subunit catalyzes the first reaction and the β-subunit catalyzes the second reaction. Thiamine-PP reduces the rate of phosphorylation of PDC by PDH kinase and ATP. Phosphorylation of PDC increases the KD of the PDC-Mg-thiamine-PP complex about 12-fold. It appears that the thiamine-PP binding site and the phosphorylation site on PDH influence each other and that HETPP is bound to PDH in a different orientation or possibly at a different site than is thiamine-PP.  相似文献   

14.
Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of the matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth.  相似文献   

15.
The mammalian pyruvate dehydrogenase complex (PDC) is a mitochondrial multienzyme complex that connects glycolysis to the tricarboxylic acid cycle by catalyzing pyruvate oxidation to produce acetyl-CoA, NADH, and CO2. This reaction is required to aerobically utilize glucose, a preferred metabolic fuel, and is composed of three core enzymes: pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). The pyruvate-dehydrogenase-specific kinase (PDK) and pyruvate-dehydrogenase-specific phosphatase (PDP) are considered the main control mechanism of mammalian PDC activity. However, PDK and PDP activity are allosterically regulated by several effectors fully overlapping PDC substrates and products. This collection of positive and negative feedback mechanisms confounds simple predictions of relative PDC flux, especially when all effectors are dynamically modulated during metabolic states that exist in physiologically realistic conditions, such as exercise. Here, we provide, to our knowledge, the first globally fitted, pH-dependent kinetic model of the PDC accounting for the PDC core reaction because it is regulated by PDK, PDP, metal binding equilibria, and numerous allosteric effectors. The model was used to compute PDH regulatory complex flux as a function of previously determined metabolic conditions used to simulate exercise and demonstrates increased flux with exercise. Our model reveals that PDC flux in physiological conditions is primarily inhibited by product inhibition (~60%), mostly NADH inhibition (~30–50%), rather than phosphorylation cycle inhibition (~40%), but the degree to which depends on the metabolic state and PDC tissue source.  相似文献   

16.
The pyruvate dehydrogenase (E1) and acetyltransferase (E2) components of pig heart and ox kidney pyruvate dehydrogenase (PDH) complex were separated and purified. The E1 component was phosphorylated (alpha-chain) and inactivated by MgATP. Phosphorylation was mainly confined to site 1. Addition of E2 accelerated phosphorylation of all three sites in E1 alpha and inactivation of E1. On the basis of histone H1 phosphorylation, E2 is presumed to contain PDH kinase, which was removed (greater than 98%) by treatment with p-hydroxymercuriphenylsulphonate. Stimulation of ATP-dependent inactivation of E1 by E2 was independent of histone H1 kinase activity of E2. The effect of E2 is attributed to conformational change(s) induced in E1 and/or E1-associated PDH kinase. PDH kinase activity associated with E1 could not be separated from it be gel filtration or DEAE-cellulose chromatography. Subunits of PDH kinase were not detected on sodium dodecyl sulphate/polyacrylamide gels of E1 or E2, presumably because of low concentration. The activity of pig heart PDH complex was increased by E2, but not by E1, indicating that E2 is rate-limiting in the holocomplex reaction. ATP-dependent inactivation of PDH complex was accelerated by E1 or by phosphorylated E1 plus associated PDH kinase, but not by E2 plus presumed PDH kinase. It is suggested that a substantial proportion of PDH kinase may accompany E1 when PDH complex is dissociated into its component enzymes. The possibility that E1 may possess intrinsic PDH kinase activity is considered unlikely, but may not have been fully excluded.  相似文献   

17.
The importance of PDHK (pyruvate dehydrogenase kinase) 2 and 4 in regulation of the PDH complex (pyruvate dehydrogenase complex) was assessed in single- and double-knockout mice. PDHK2 deficiency caused higher PDH complex activity and lower blood glucose levels in the fed, but not the fasted, state. PDHK4 deficiency caused similar effects, but only after fasting. Double deficiency intensified these effects in both the fed and fasted states. PDHK2 deficiency had no effect on glucose tolerance, PDHK4 deficiency produced only a modest effect, but double deficiency caused a marked improvement and also induced lower insulin levels and increased insulin sensitivity. In spite of these beneficial effects, the double-knockout mice were more sensitive than wild-type and single-knockout mice to long-term fasting, succumbing to hypoglycaemia, ketoacidosis and hypothermia. Stable isotope flux analysis indicated that hypoglycaemia was due to a reduced rate of gluconeogenesis and that slightly more glucose was converted into ketone bodies in the double-knockout mice. The findings establish that PDHK2 is more important in the fed state, PDHK4 is more important in the fasted state, and survival during long-term fasting depends upon regulation of the PDH complex by both PDHK2 and PDHK4.  相似文献   

18.
We isolated a mouse homologue cDNA of pyruvate dehydrogenase (PDH) kinase 4 (PDK4) with differential mRNA display as an up-regulated gene in the hypertrophied ventricles of juvenile visceral steatosis (JVS) mice with systemic carnitine deficiency. The PDK4 mRNA level was 5 times higher in JVS mice than in control mice under fed conditions. After 24 h starvation, this level increased to 20 times in JVS and 7 times in control, compared with the control fed level. On the other hand, carnitine administration reduced the high level of PDK4 mRNA in JVS mice to the control fed level. In control mice, the change in PDK4 mRNA was inversely correlated with the change in PDH activity. In JVS mice, however, the PDK4 mRNA level was not always correlated with the active-form PDH level.  相似文献   

19.
AIMS: To investigate the relationship between the activity of pyruvate dehydrogenase (PDH) bypass and the production of pyruvate of a multi-vitamin auxotrophic yeast Torulopsis glabrata. METHODS AND RESULTS: Torulopsis glabrata CCTCC M202019, a multi-vitamin auxotrophic yeast that requires acetate for complete growth on glucose minimum medium, was selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata WSH-IP303 screened in previous study [Li et al. (2001) Appl. Microbiol. Biotechnol. 55, 680-685]. Strain CCTCC M202019 produced 21% higher pyruvate than the parent strain and was genetically stable in flask cultures. The activities of the pyruvate metabolism-related enzymes in parent and mutant strains were measured. Compared with the parent strain, the activity of pyruvate decarboxylase (PDC) of the mutant strain CCTCC M202019 decreased by roughly 40%, while the activity of acetyl-CoA synthetase (ACS) of the mutant increased by 103.5 or 57.4%, respectively, in the presence or absence of acetate. Pyruvate production by the mutant strain CCTCC M202019 reached 68.7 g l(-1) at 62 h (yield on glucose of 0.651 g g(-1)) in a 7-l jar fermentor. CONCLUSIONS: The increased pyruvate yield in T. glabrata CCTCC M202019 was due to a balanced manipulation of the PDH bypass, where the shortage of cytoplasmic acetyl-CoA caused by the decreased activity of PDC was properly compensated by the increased activity of ACS. SIGNIFICANCE AND IMPACT OF THE STUDY: Manipulating the PDH bypass may provide an alternative approach to enhance the production of glycolysis-related metabolites.  相似文献   

20.
The activity of pyruvate dehydrogenase (PDH) complex and PDH kinase were measured in brown adipose tissue (BAT) of 4-week-gold thioglucose (GTG)-obese mice. The proportion of PDH complex in the active dephosphorylated form was 2-fold higher in BAT of post-absorptive obese mice compared with lean controls. This result was consistent with the higher circulating insulin concentration observed in GTG-obese mice. In both obese and lean mice the PDH-complex activity in BAT decreased after 24 h starvation and increased in response to supraphysiological insulin injection, indicating that the PDH complex is insulin-responsive in BAT of GTG-obese mice. There was no difference in the PDH kinase activity of BAT in post-absorptive or insulin-injected lean and obese mice, suggesting that the higher PDH-complex activity in obese mice was not due to decreased PDH kinase activity. There is no evidence for a decreased activity of PDH complex contributing to insulin resistance in BAT of 4-week-GTG-obese mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号