首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of clustered regularly interspaced palindromic repeats (CRISPR)-associated protein (Cas) variants with a broader recognition scope is critical for further improvement of CRISPR/Cas systems. The original Cas9 protein from Streptococcus canis (ScCas9) can recognize simple NNG-protospacer adjacent motif (PAM) targets, and therefore possesses a broader range relative to current CRISPR/Cas systems, but its editing efficiency is low in plants. Evolved ScCas9+ and ScCas9++ variants have been shown to possess higher editing efficiencies in human cells, but their activities in plants are currently unknown. Here, we utilized codon-optimized ScCas9, ScCas9+ and ScCas9++ and a nickase variant ScCas9n++ to systematically investigate genome cleavage activity and cytidine base editing efficiency in rice (Oryza sativa L.). This analysis revealed that ScCas9++ has higher editing efficiency than ScCas9 and ScCas9+ in rice. Furthermore, we fused the evolved cytidine deaminase PmCDA1 with ScCas9n++ to generate a new evoBE4max-type cytidine base editor, termed PevoCDA1-ScCas9n++. This base editor achieved stable and efficient multiplex-site base editing at NNG-PAM sites with wider editing windows (C1–C17) and without target sequence context preference. Multiplex-site base editing of the rice genes OsWx (three targets) and OsEui1 (two targets) achieved simultaneous editing and produced new rice germplasm. Taken together, these results demonstrate that ScCas9++ represents a crucial new tool for improving plant editing.  相似文献   

2.
基于CRISPR/Cas系统出现的单碱基编辑技术可以实现高效且简便的单个碱基的替换编辑,其原理是将胞嘧啶脱氨酶(cytosine deaminase)或腺苷脱氨酶(adenosine deaminase)与Cas9n(D10A)形成融合蛋白,通过CRISPR/Cas精准识别和定位DNA上的靶位点后,利用胞嘧啶脱氨酶或腺苷脱氨酶将靶点距离sgRNA位点基序(protospacer adjacent motif,PAM)序列端的4~7位的单个碱基发生单碱基转换或颠换。对基于CRISPR/Cas系统的单碱基编辑技术发现的历史、组成和分类、工作原理进行了概述,并总结了该系统最新进展及应用。  相似文献   

3.
【目的】在巴斯德毕赤酵母(Pichia pastoris)中建立一套分子靶向突变系统,为毕赤酵母的基因工程改造提供高效的编辑工具。【方法】基于规律成簇的间隔短回文重复序列/Cas9核酸酶(clustered regularly interspaced short palindromic repeats/Cas9 nuclease,CRISPR/Cas9)技术,设计并构建nCas9与胞苷脱氨酶融合表达的胞嘧啶碱基编辑器(cytosine base editor,CBE),并选择酵母基因组中富含碱基C的一段序列作为靶标以评价CBE的碱基编辑功能。电转化酵母后,利用高通量测序技术分析CBE的编辑效率及编辑模式,并进一步探究连接肽长度、融合蛋白相对位置和gRNA靶向序列(即spacer)长度等因素对CBE功能的影响。【结果】nCas9与PmCDA1融合组成的CBE能够实现毕赤酵母基因组碱基C的高效编辑。当连接肽长度为(GGGGS)10时,CBE的编辑效率最高,编辑窗口位于前间隔序列邻近基序(protospacer adjacent motif,PAM)远端的C20–C14之间,其中C18的编辑效率可达85.1%。nCas9与PmCDA1相对位置的改变对CBE的编辑效率和编辑模式的影响不大。而gRNA靶向序列长度影响着CBE的编辑效率,且gRNA靶向序列长度不能低于17 nt,但19–23 nt之间均可引导CBE对基因组的高效编辑。【结论】本研究在巴斯德毕赤酵母中构建了一套具有高效碱基编辑活性的胞嘧啶碱基编辑器,为基于毕赤酵母的基础和应用研究提供了工具支持。  相似文献   

4.
5.
The oleaginous yeast Yarrowia lipolytica has a tendency to use the non‐homologous end joining repair (NHEJ) over the homology directed recombination as double‐strand breaks (DSB) repair system, making it difficult to edit the genome using homologous recombination. A recently developed Target‐AID (activation‐induced cytidine deaminase) base editor, designed to recruit cytidine deaminase (CDA) to the target DNA locus via the CRISPR/Cas9 system, can directly induce C to T mutation without DSB and donor DNA. In this study, this system is adopted in Y. lipolytica for multiplex gene disruption. Target‐specific gRNA(s) and a fusion protein consisting of a nickase Cas9, pmCDA1, and uracil DNA glycosylase inhibitor are expressed from a single plasmid to disrupt target genes by introducing a stop codon via C to T mutation within the mutational window. Deletion of the KU70 gene involved in the NHEJ prevents the generation of indels by base excision repair following cytidine deamination, increasing the accuracy of genome editing. Using this Target‐AID system with optimized expression levels of the base editor, single gene disruption and simultaneous double gene disruption are achieved with the efficiencies up to 94% and 31%, respectively, demonstrating this base editing system as a convenient genome editing tool in Y. lipolytica.  相似文献   

6.
碱基编辑技术结合了CRISPR/Cas系统的靶向特异性与碱基脱氨酶的催化活性,因其不产生双链DNA断裂、不需要外源DNA模板、不依赖同源重组修复,自开发以来,便受到研究者的追捧,在哺乳动物细胞、植物、微生物等领域相继得到开发与应用。为了进一步丰富碱基编辑系统在谷氨酸棒杆菌中的应用,将鼠源胞嘧啶脱氨酶(rAPOBEC1)与nCas9蛋白融合,实现了在谷氨酸棒杆菌中C到T的编辑,编辑比例较低(0-20%);在上述融合蛋白C端添加UGI蛋白,构建BE3型胞嘧啶碱基编辑器,抑制体内的DNA碱基切除修复机制,显著的提高了碱基编辑效率,使得C到T的碱基编辑效率高达90%;为了简化操作,将双质粒碱基编辑系统优化为单质粒碱基编辑系统,并显著提高转化效率;最后通过单质粒碱基编辑系统对基因组中其他位点的编辑测试,进一步证明了BE3型碱基编辑器在谷氨酸棒杆菌中的高效性,同时发现该碱基编辑器具有较宽的编辑窗口(PAM上游-11到-19位),有助于覆盖更多的基因组靶标位点,为谷氨酸棒杆菌的基因组改造提供了更多的工具选择。  相似文献   

7.
The base‐editing technique using CRISPR/nCas9 (Cas9 nickase) or dCas9 (deactivated Cas9) fused with cytidine deaminase is a powerful tool to create point mutations. In this study, a novel G. hirsutum‐Base Editor 3 (GhBE3) base‐editing system has been developed to create single‐base mutations in the allotetraploid genome of cotton (Gossypium hirsutum). A cytidine deaminase sequence (APOBEC) fused with nCas9 and uracil glycosylase inhibitor (UGI) was inserted into our CRISPR/Cas9 plasmid (pRGEB32‐GhU6.7). Three target sites were chosen for two target genes, GhCLA and GhPEBP, to test the efficiency and accuracy of GhBE3. The editing efficiency ranged from 26.67 to 57.78% at the three target sites. Targeted deep sequencing revealed that the C→T substitution efficiency within an ‘editing window’, approximately six‐nucleotide windows of ?17 to ?12 bp from the PAM sequence, was up to 18.63% of the total sequences. The 27 most likely off‐target sites predicted by CRISPR‐P and Cas‐OFFinder tools were analysed by targeted deep sequencing, and it was found that rare C→T substitutions (average < 0.1%) were detected in the editing windows of these sites. Furthermore, whole‐genome sequencing analyses on two GhCLA‐edited and one wild‐type plants with about 100× depth showed that no bona fide off‐target mutations were detectable from 1500 predicted potential off‐target sites across the genome. In addition, the edited bases were inherited to T1 progeny. These results demonstrate that GhBE3 has high specificity and accuracy for the generation of targeted point mutations in allotetraploid cotton.  相似文献   

8.
CRISPR/Cas9-guided cytidine deaminase enables C:G to T:A base editing in bacterial genome without introduction of lethal double-stranded DNA break, supplement of foreign DNA template, or dependence on inefficient homologous recombination. However, limited by genome-targeting scope, editing window, and base transition capability, the application of base editing in metabolic engineering has not been explored. Herein, four Cas9 variants accepting different protospacer adjacent motif (PAM) sequences were used to increase the genome-targeting scope of bacterial base editing. After a comprehensive evaluation, we demonstrated that PAM requirement of bacterial base editing can be relaxed from NGG to NG using the Cas9 variants, providing 3.9-fold more target loci for gene inactivation in Corynebacterium glutamicum. Truncated or extended guide RNAs were employed to expand the canonical 5-bp editing window to 7-bp. Bacterial adenine base editing was also achieved with Cas9 fused to adenosine deaminase. With these updates, base editing can serve as an enabling tool for fast metabolic engineering. To demonstrate its potential, base editing was used to deregulate feedback inhibition of aspartokinase via amino acid substitution for lysine overproduction. Finally, a user-friendly online tool named gBIG was provided for designing guide RNAs for base editing-mediated inactivation of given genes in any given sequenced genome ( www.ibiodesign.net/gBIG ).  相似文献   

9.
Targeted mutagenesis via genome‐editing technologies holds great promise in developing improved crop varieties to meet future demands. Point mutations or single nucleotide polymorphisms often determine important agronomic traits of crops. Genome‐editing‐based single‐base changes could generate elite trait variants in crop plants which help in accelerating crop improvement. Among the genome‐editing technologies, base editing has emerged as a novel and efficient genome‐editing approach which enables direct and irreversible conversion of one target base into another in a programmable manner. A base editor is a fusion of catalytically inactive CRISPR–Cas9 domain (Cas9 variants) and cytosine or adenosine deaminase domain that introduces desired point mutations in the target region enabling precise editing of genomes. In the present review, we have summarized the development of different base‐editing platforms. Then, we have focussed on the current advances and the potential applications of this precise technology in crop improvement. The review also sheds light on the limitations associated with this technology. Finally, the future perspectives of this emerging technology towards crop improvement have been highlighted.  相似文献   

10.
魏瑜  张晓辉  李大力 《遗传》2017,39(12):1115-1121
近年发展起来的人工核酸酶可通过引起特定位点的DNA双链断裂实现对目的片段的有效编辑。为进一步提高碱基修改的效率和精确度,2016年研究者们利用CRISPR/Cas9识别特定DNA序列的功能,结合胞嘧啶脱氨酶的生化活性发明了将胞嘧啶高效转换为胸腺嘧啶(C>T)的嘧啶单碱基编辑系统(base editor)。这一系统虽然能精准实现嘧啶直接转换,大大提高精确基因编辑效率,但美中不足的是无法对嘌呤进行修改。近期,Nature报道了将细菌中的tRNA腺嘌呤脱氨酶定向进化形成具有催化DNA腺嘌呤底物的脱氨酶,将其与Cas9系统融合发明了具有高效催化腺嘌呤转换为鸟嘌呤的新工具—腺嘌呤单碱基编辑系统(ABEs, adenine base editors)。本文总结了单碱基编辑工具的发展历程和最新研究进展,着重介绍ABEs的研发过程,并对单碱基编辑工具今后的应用方向和研发方向进行展望。  相似文献   

11.
Genome-editing technologies consisting of targeted mutagenesis and gene targeting enable us to modify genes of interest rapidly and precisely. The discovery in 2012 of CRISPR/Cas9 systems and their development as sequence-specific nucleases has brought about a paradigm shift in biology. Initially, CRISPR/Cas9 was applied in targeted mutagenesis to knock out a target gene. Thereafter, advances in genome-editing technologies using CRISPR/Cas9 developed rapidly, with base editing systems for transition substitution using a combination of Cas9 nickase and either cytidine or adenosine deaminase being reported in 2016 and 2017, respectively, and later in 2021 bringing reports of transversion substitution using Cas9 nickase, cytidine deaminase and uracil DNA glycosylase. Moreover, technologies for gene targeting and prime editing systems using DNA or RNA as donors have also been developed in recent years. Besides these precise genome-editing strategies, reports of successful chromosome engineering using CRISPR/Cas9 have been published recently. The application of genome editing to crop breeding has advanced in parallel with the development of these technologies. Genome-editing enzymes can be introduced into plant cells, and there are now many examples of crop breeding using genome-editing technologies. At present, it is no exaggeration to say that we are now in a position to be able to modify a gene precisely and rearrange genomes and chromosomes in a predicted way. In this review, we introduce and discuss recent highlights in the field of precise gene editing, chromosome engineering and genome engineering technology in plants.  相似文献   

12.
The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits.  相似文献   

13.
CRISPR/Cas9的发现为多种生物的基因编辑提供了强有力的工具。然而,该系统在提供靶向性基因修饰的同时,会产生一些不需要的突变,即脱靶现象。为提高CRISPR/Cas9的特异性,我们将野生型FokI核酸内切酶的功能结构域与催化功能区失活的Cas9蛋白(dCas9)进行融合,形成融合蛋白用于降低脱靶效应。FokⅠ是一种依赖于二聚化才能行使内切酶活性的核酸酶,在本研究中,通过将FokⅠ功能结构融合到dCas9的N端,构建表达质粒pST1374-dCas9-FokⅠ。我们前期研究中,发现一个sgRNA在介导Cas9编辑Dnmt1基因建立条件敲除大鼠时,存在显著的脱靶现象。以此为基础,我们利用dCas9-FokⅠ/sgRNA系统编辑大鼠Dnmt1基因,研究该系统是否能够进行基因编辑以及是否能够提高基因编辑特异性。将转录好的dCas9-FokⅠ mRNA和sgRNA显微注射到SD大鼠的受精卵中,用于产生基因编辑大鼠。通过显微注射以及胚胎移植,最终获得43只F0代大鼠,其中两只在靶点位置包含突变,突变效率达4.5%。对脱靶情况进行分析,结果显示,无脱靶现象存在。综上,表明dCas9-FokⅠ/sgRNA可以应用于编辑大鼠基因,并能显著提高特异性。尽管dCas9-FokⅠ/sgRNA系统相比于Cas9/sgRNA系统,基因编辑效率有所下降,但是该技术的发展为基因治疗提供了可供选择的潜在工具。  相似文献   

14.
Liu  Zhiquan  Chen  Siyu  Jia  Yingqi  Shan  Huanhuan  Chen  Mao  Song  Yuning  Lai  Liangxue  Li  Zhanjun 《中国科学:生命科学英文版》2021,64(8):1355-1367
Science China Life Sciences - Cytidine base editor (CBE), which is composed of a cytidine deaminase fused to Cas9 nickase, has been widely used to induce C-to-T conversions in a wide range of...  相似文献   

15.
16.

Background

As a result of its simplicity and high efficiency, the CRISPR-Cas system has been widely used as a genome editing tool. Recently, CRISPR base editors, which consist of deactivated Cas9 (dCas9) or Cas9 nickase (nCas9) linked with a cytidine or a guanine deaminase, have been developed. Base editing tools will be very useful for gene correction because they can produce highly specific DNA substitutions without the introduction of any donor DNA, but dedicated web-based tools to facilitate the use of such tools have not yet been developed.

Results

We present two web tools for base editors, named BE-Designer and BE-Analyzer. BE-Designer provides all possible base editor target sequences in a given input DNA sequence with useful information including potential off-target sites. BE-Analyzer, a tool for assessing base editing outcomes from next generation sequencing (NGS) data, provides information about mutations in a table and interactive graphs. Furthermore, because the tool runs client-side, large amounts of targeted deep sequencing data (<?1?GB) do not need to be uploaded to a server, substantially reducing running time and increasing data security. BE-Designer and BE-Analyzer can be freely accessed at http://www.rgenome.net/be-designer/ and http://www.rgenome.net/be-analyzer/, respectively.

Conclusion

We develop two useful web tools to design target sequence (BE-Designer) and to analyze NGS data from experimental results (BE-Analyzer) for CRISPR base editors.
  相似文献   

17.
18.
19.
In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize “off-target” sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts postinjection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号