首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four UDP-dependent glucosyltransferase (UGT) genes, UGT706C1, UGT706D1, UGT707A3, and UGT709A4 were cloned from rice, expressed in Escherichia coli, and purified to homogeneity. In order to find out whether these enzymes could use flavonoids as glucose acceptors, apigenin, daidzein, genistein, kaempferol, luteolin, naringenin, and quercetin were used as potential glucose acceptors. UGT706C1 and UGT707A3 could use kaempferol and quercetin as glucose acceptors and the major glycosylation position was the hydroxyl group of carbon 3 based on the comparison of HPLC retention times, UV spectra, and NMR spectra with those of corresponding authentic flavonoid 3-O-glucosides. On the other hand, UGT709A4 only used the isoflavonoids genistein and daidzein and transferred glucose onto 7-hydroxyl group. In addition, UGT706D1 used a broad range of flavonoids including flavone, flavanone, flavonol, and isoflavone, and produced at least two products with glycosylation at different hydroxyl groups. Based on their substrate preferences and the flavonoids present in rice, the in vivo function of UGT706C1, UGT706D1, and UGT707A3 is most likely the biosynthesis of kaempferol and quercetin glucosides.  相似文献   

2.
van de Staaij  J.  Rozema  J.  van Beem  A.  Aerts  R. 《Plant Ecology》2001,154(1-2):169-177
An area of coastal dune grassland, dominated by the gramineous species Calamagrostis epigeios and Carex arenaria, was exposed to enhanced levels of UV-B radiation during a five year period. These species showed reduced AM-fungal infection percentages in their roots. In C. epigeios AM infection was reduced by 18%, C. arenaria showed a reduction by 20%. The major effect of enhanced UV-B on AM associations was a reduction of the number of arbuscules. This indicates a reduction in the exchange of nutrients between the symbionts. Since the effect of UV-B on AM associations may result from altered flavonoid levels in the root exudates of the host plants, flavonoid levels in the roots were investigated. No detectable flavonoid concentrations were found in the roots of C. epigeios and C. arenaria. Less effective AM associations can have pronounced negative effects on biodiversity and nutrient dynamics of the dune grassland ecosystem. The possible mechanisms causing these indirect effects of elevated UV-B on below ground AM associations are discussed. We conclude that UV-B induced changes in plant hormone levels are more likely to be the mechanism reducing AMF infection than UV-B induced alterations in flavonoid concentrations in the root exudates of the host plant.  相似文献   

3.
Ultraviolet-B radiation is known as a noxious factor that destroys every life form. Plants that occupy the coastal area are assumed to be adaptive to UV-B as well as the other major stresses. The objective of this study was to clarify and compare (1) the flavonoid compositions of coastal and inland populations of Campanula punctata, and (2) UV-B effects on flavonoid content in plants originating from different habitats under uniform (i.e. experimental) and natural conditions. Flavonoid compositions of coastal and inland populations were shown to be identical. The UV-B exclusion experiment revealed two tendencies that were commonly observed in both coastal and inland populations: (1) the flavonoid accumulation decreased with an increase in degree of UV-B exclusion, and (2) the quantity of phenolic acids conversely became maximum under complete UV-B exclusion. Under the natural habitat conditions, significantly high accumulation of flavonoids were detected in two coastal populations even though no significant difference was found between the two other coastal populations and two inland populations. Weak correlations between UV-B intensity and flavonoid accumulation under the natural habitat conditions suggest that various micro-environmental factors may influence the production of flavonoids, and that the plants may acquire adaptive traits other than increasing flavonoids in order to inhabit the coastal environment.  相似文献   

4.
An enhanced UV-B radiation (5.0?kJ?m?2) was supplied before, during, and after Magnaporthe oryzae infection. The effects of single and compound stress of the UV-B radiation and M. oryzae on the resistance physiology and gene expression of rice leaves were examined. Results revealed that UV-B radiation given before M. oryzae infection (UV-B?→?M.) significantly increased the pathogenesis-related proteins (PRs) activities of phenylalanine ammonialyase (PAL), lipoxygenase (LOX), chitinase (CHT), and β-1,3-glucanase, the resistance-related substances (flavonoids and total phenols) content, and resistance-related genes (OsPAL and OsCHT) expression, thereby improving the disease resistance of rice leaves. Simultaneous exposure to UV-B radiation and M. oryzae (UV-B/M.) significantly increased the OsLOX2 expression and the PRs activities. Exposure to UV-B radiation after M. oryzae infection (M.?→?UV-B) decreased the flavonoid content, did not improve the PRs activity, and increased OsLOX2 expression. Compound treatments of UV-B?→?M., UV-B/M., and M.?→?UV-B reduced the disease index by 62.3%, 40.2%, and 26.6%, respectively, indicating UV-B radiation inhibited the occurrence of M. oryzae disease, but its inhibitory effect weakened when it was provided after M. oryzae infection. Hence, rice responded to the compound stress of UV-B radiation and M. oryzae through a resistance-related physiological mechanism associated with the sequence of stress occurrence.  相似文献   

5.
6.
7.
Mammalian phase II metabolism of dietary plant flavonoid compounds generally involves substitution with glucuronic acid. In contrast, flavonoids mainly exist as glucose conjugates in plants, and few plant UDP-glucuronosyltransferase enzymes have been identified to date. In the model legume Medicago truncatula, the major flavonoid compounds in the aerial parts of the plant are glucuronides of the flavones apigenin and luteolin. Here we show that the M. truncatula glycosyltransferase UGT84F9 is a bi-functional glucosyl/glucuronosyl transferase in vitro, with activity against a wide range of flavonoid acceptor molecules including flavones. However, analysis of metabolite profiles in leaves and roots of M. truncatula ugt84f9 loss of function mutants revealed that the enzyme is essential for formation of flavonoid glucuronides, but not most flavonoid glucosides, in planta. We discuss the use of plant UGATs for the semi-synthesis of flavonoid phase II metabolites for clinical studies.

UGT84F9 is a bifunctional glucuronosyltransferase/glucosyltransferase that is necessary for the glucuronidation of a wide range of flavonoid natural products in Medicago truncatula.  相似文献   

8.
9.
10.
11.
12.
High salt is a major environmental factor that threatens plant growth and development. Increasing evidence indicates that histone acetylation is involved in plant responses to various abiotic stress; however, the underlying epigenetic regulatory mechanisms remain poorly understood. In this study, we revealed that the histone deacetylase OsHDA706 epigenetically regulates the expression of salt stress response genes in rice (Oryza sativa L.). OsHDA706 localizes to the nucleus and cytoplasm and OsHDA706 expression is significantly induced under salt stress. Moreover, oshda706 mutants showed a higher sensitivity to salt stress than the wild-type. In vivo and in vitro enzymatic activity assays demonstrated that OsHDA706 specifically regulates the deacetylation of lysines 5 and 8 on histone H4 (H4K5 and H4K8). By combining chromatin immunoprecipitation and mRNA sequencing, we identified the clade A protein phosphatase 2 C gene, OsPP2C49, which is involved in the salt response as a direct target of H4K5 and H4K8 acetylation. We found that the expression of OsPP2C49 is induced in the oshda706 mutant under salt stress. Furthermore, the knockout of OsPP2C49 enhances plant tolerance to salt stress, while its overexpression has the opposite effect. Taken together, our results indicate that OsHDA706, a histone H4 deacetylase, participates in the salt stress response by regulating the expression of OsPP2C49 via H4K5 and H4K8 deacetylation.  相似文献   

13.
UV-B radiation inhibits hypocotyl elongation in etiolated tomato (Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings acting through a photoreceptor system with peak apparent effectiveness around 300 nm. In order lo further characterize the response and gain insight into its potential ecological significance, the time-course of inhibition was measured and compared with the time-course of flavonoid accumulation in the same seedlings. When a background of strong (> 620 μmol m?2 s?1) white light (WL) was supplemented with low irradiance UV-B (~ 3 μmol m?2 s?1). substantial (~ 50%) inhibition of elongation occurred within 3 h of the light treatment. The magnitude of UV-B-induced elongation inhibition was similar in wild type (WT) and au-mutant seedlings, in spite of the large differences between genotypes in rate and temporal pattern of elongation. In comparison to the effect of UV-B on elongation, induction of flavonoid accumulation in WT and au seedlings undergoing de-etiolation was a much slower response. Several UV-absorbing compounds appeared to be specifically induced by light, and some of them accumulated faster under the WL + UV-B treatment than under WL alone. However, there was little or no delectable effect of WL on flavonoid levels until up to 3 h of treatment, and the specific UV-B effect was measurable only after 6 h of continuous treatment. Indeed. UV-B-screening properties of crude alcoholic extracts were not different between WL and WL + UV-B treatments until after 9 or 24 h. When the light treatments were applied to seedlings that were just breaking through the soil surface. UV-B was found to consistently retard seedling emergence. These results suggest that the rapid inhibition of elongation in de-etiolating seedlings is an evolved response lo UV-B, which may serve to minimize seedling exposure to sunlight until protective pigmentation responses (triggered by WL and UV-B) have taken place in the seedlings epidermis.  相似文献   

14.
灯盏乙素发酵生产过程中,黄酮6位羟基化酶催化效率不足,导致产生至少约18%的副产物。本研究以2种黄酮6位羟基化酶CYP82D4与CYP706X为研究目标,通过分子动力学模拟与量子化学计算,对两种黄酮6位羟基化酶的催化机制进行解析。结果表明,CYP82D4与CYP706X在反应决速步的能垒几乎相同,应当具有相似的反应速率,而CYP82D4相对较小的底物结合能可能有利于产物释放,是其具有更高催化效率的直接原因。最后,基于对底物进出过程的研究,CYP82D4的L540A突变将催化效率提高了1.37倍,证明了理论计算指导黄酮6位羟基化酶改造优化的可行性。本研究揭示了黄酮6位羟化酶的催化机制,为对其进行改造优化以提高灯盏乙素的发酵生产效率提供了参考。  相似文献   

15.
BACKGROUND AND AIMS: Plants exposed to solar ultraviolet-B radiation (UV-B, 280-315 nm) frequently suffer less insect herbivory than do plants that receive attenuated levels of UV-B. This anti-herbivore effect of solar UV-B exposure, which has been documented in several ecosystems, is in part mediated by changes in plant tissue quality. Exposure to UV-B can modify the abundance of a number of secondary metabolites, including phenolic compounds with potential impacts on insect herbivores. The aim of this study is to assess the potential anti-herbivore role of UV-B-induced phenolic compounds by comparing the phenolic profiles induced by UV-B and simulated insect herbivory in two wild species of the genus Nicotiana. METHODS: Plants grown under field and glasshouse conditions were exposed to contrasting levels of UV-B. Half of the plants of the attenuated UV-B treatment were given a simulated herbivory treatment, where leaves were mechanically damaged and immediately treated with oral secretions of Manduca sexta caterpillars. This treatment is known to mimic the impact of real herbivory on the expression of plant defences in Nicotiana. Phenolic profiles induced by UV-B and simulated herbivory were characterized using high-performance liquid chromatography-mass spectrometry (HPLC-MS). KEY RESULTS: UV-B induced the accumulation of several UV-absorbing phenolic compounds that are known to play a significant role in UV-B screening. Interestingly, there was a significant convergence in the phenolic profiles induced by UV-B and simulated herbivory: chlorogenic acid and dicaffeoylspermidine isomers, in particular, displayed a similar pattern of response to these stimuli. In contrast, rutin, the only flavonoid that accumulated in significant quantities in the experiments, was only induced by UV-B. CONCLUSIONS: The results suggest that the anti-herbivory effect induced by UV-B may be mediated at least in part by the accumulation of phenylpropanoid derivatives that are similar to those induced by the plant in response to insect herbivory.  相似文献   

16.
研究了大豆的生长、生物量、抗氧化酶活性和吲哚乙酸(IAA)氧化酶活性在Cd^2 、UV-B辐射和二者复合胁迫(Cd UV-B)下的变化。结果表明,Cd^2 和UV-B辐射都抑制大豆生长,并显著抑制根的伸长,二者复合后加强了对根伸长的抑制。UV-B辐射显著增强了POD、SOD活性,Cd^2 对POD活性影响不明显,但却拮抗UV-B对POD活性的诱导,SOD活性在各种胁迫下显著增强。虽然Cd%2 对叶片类黄酮含量影响不明显,但对UV-B诱导的类黄酮合成有一定影响。IAA氧化酶活性在复合作用下下降,可能是复合胁迫影响大豆生长的重要因素之一。  相似文献   

17.
Liu M L  Cao B  Zhou S H  Liu Y B 《农业工程》2012,32(3):150-155
Caryopteris mongolica is a dwarf shrub mainly found in grassland and desert areas of north-west China, and which can survive severe environmental stress. This study aimed to assess the responses of the flavonoid pathway to UV-B radiation treatments and its correlation to the lipid peroxide and antioxidant systems in C. mongolica. In UV-B radiation experiments, plants were exposed to UV-B radiation treatments with a intensity of 30 J/s for 1, 4 and 24 h, respectively. A control group without UV-B radiation treatment was also used. The chlorophyll fluorescence parameters, contents of chlorophyll and carotenoid, levels of lipid peroxidation, activities of antioxidant system enzymes, accumulations of total flavonoids and anthocyanins, and activities of phenylalanine ammonialyase (PAL) and chalcone isomerase (CHI) under different UV-B radiation treatments were investigated. The correlations between products and key enzymes in the flavonoid pathway and the lipid peroxide and antioxidant systems were also analyzed. The results showed that chlorophyll fluorescence parameters decreased within 24 h of treatment. The chlorophyll contents decreased within 4 h and remained stable after 24 h. Carotenoid content significantly increased. The level of MDA, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD) and the contents of total flavonoids and anthocyanidins increased, while catalase (CAT) activity decreased under UV-B stress. The activities of PAL and CHI also increased with the increased content of total flavonoids. The flavonoid products anthocyanidins had a significant positive correlation with MDA level, as well as the activities of antioxidant enzyme SOD. In conclusion, UV-B radiation induced the degradation of photosynthetic pigments and decreased photochemical efficiency of Photosystem II; increased the contents of MDA, total flavonoids and anthocyanidins; and also enhanced activities of antioxidant enzymes (SOD, APX and POD) and key enzymes (PAL and CHI) in the flavonoid pathway in C. mongolica. Thus, we speculate that the flavonoid pathway were involved in the regulation of stress resistance in C. mongolica.  相似文献   

18.
Sisson WB 《Plant physiology》1981,67(1):120-124
Net photosynthesis, growth, and ultraviolet (UV) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of UV-B irradiation and a UV-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other UV-B radiation-absorbing compounds from the first leaves increased with time and level of UV-B radiation impinging on leaf surfaces. Although absorbance of UV-B radiation by extracted pigments increased substantially, UV-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective UV-B radiation but not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both UV-B radiation treatments. Repression of photosynthesis by UV-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity.  相似文献   

19.
在云南玉溪烟区种植烤烟海拔最高(1806.0m)的通海县,通过盆栽烤烟K326试验,研究了在滤减自然的太阳UV-B辐射强度25%、50%和65%条件下,UV-B辐射对烟叶发育过程中可溶性蛋白、光合色素和类黄酮的影响。结果表明:随叶龄增加,可溶性蛋白含量下降,光合色素降解,类黄酮在老叶中积累,蛋白质在生理成熟期对UV-B辐射最敏感。与对照相比,减弱UV-B辐射处理降低了烟叶类黄酮和可溶性蛋白含量,但光合色素含量上升;较低的UV-B辐射降低了叶绿素的降解速度。结果从一侧面说明UV-B辐射对烟叶蛋白质的合成是有益的,类黄酮和叶绿素的变化是对UV-B辐射变化的适应性反应,类黄酮与蛋白质之间可能存在一定的偶联关系。  相似文献   

20.
In this review all recent field studies on the effects of UV-B radiation on bryophytes are discussed. In most of the studies fluorescent UV-B tubes are used to expose the vegetation to enhanced levels of UV-B radiation to simulate stratospheric ozone depletion. Other studies use screens to filter the UV-B part of the solar spectrum, thereby comparing ambient levels of UV-B with reduced UV-B levels, or analyse effects of natural variations in UV-B arising from stratospheric ozone depletion. Nearly all studies show that mosses are well adapted to ambient levels of UV-B radiation since UV-B hardly affects growth parameters. In contrast with outdoor studies on higher plants, soluble UV-B absorbing compounds in bryophytes are typically not induced by enhanced levels of UV-B radiation. A few studies have demonstrated that UV-B radiation can influence plant morphology, photosynthetic capacity, photosynthetic pigments or levels of DNA damage. However, there is only a limited number of outdoor studies presented in the literature. More additional, especially long-term, experiments are needed to provide better data for statistical meta-analyses. A mini UV-B supplementation system is described, especially designed to study effects of UV-B radiation at remote field locations under harsh conditions, and which is therefore suited to perform long-term studies in the Arctic or Antarctic. The first results are presented from a long-term UV-B supplementation experiment at Signy Island in the Maritime Antarctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号