首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细胞通过基因表达调控来应对外界刺激,其中影响mRNA稳定性及翻译效率的转录后调控发挥重要作用。RNA结合蛋白(RNA binding proteins, RBPs)是介导转录后调控的重要分子,Sam68(SRC associated in mitosis of 68 kD)是集信号转导特性与RNA激活功能于一身的RNA结合蛋白,参与转录、可变剪接及核输出等mRNA 的代谢过程,且Sam68可通过信号通路参与细胞应答、细胞周期调控和疾病发生等。最新研究表明,Sam68可通过非编码RNAs(noncoding RNA, ncRNAs)参与表观遗传、转录与转录后调控。本文在介绍Sam68结构和转录后修饰的基础上,着重讨论Sam68在信号转导、可变剪接、ncRNAs代谢、疾病发生等方面的最新研究进展。  相似文献   

2.
RNA结合蛋白(RNA-binding proteins)在转录后基因表达调节中起着重要的作用,它通过和RNA相互作用来调节细胞的功能。RNA结合蛋白参与RNA剪接、多聚腺苷化作用、序列编辑、RNA转运、维持RNA的稳定和降解、细胞内定位和翻译控制等RNA代谢的各个方面。主要介绍了RNA结合蛋白的结构、靶标RNA及RNA结合蛋白在动植物和疾病中的研究。  相似文献   

3.
4.
RNA结合蛋白(RNA binding proteins,RBPs)是一类通过其RNA结合结构域与RNA相互作用的蛋白质,在细胞内发挥着非常重要的作用。RBPs参与从RNA代谢(包括RNA的可变剪接、稳定性、翻译)到表观遗传修饰等多种调控途径。已有大量文献报道转录因子、表观遗传修饰和细胞外信号通路参与调控干细胞的多能性维持、分化和体细胞重编程,但对于RBPs在细胞命运转变中作用的研究报道甚少。该文主要综述了RBPs通过调控RNA的可变剪接、mRNA稳定性、翻译水平、microRNA代谢及组蛋白修饰进而调控干细胞多能性维持和体细胞重编程。  相似文献   

5.
The interaction of RNA-binding proteins (RBPs) with RNA is a crucial aspect of normal cellular metabolism. Yet, the diverse number of RBPs and RNA motifs to which they bind, the wide range of interaction strengths and the fact that RBPs associate in dynamic complexes have made it challenging to determine whether a particular RNA-binding protein binds a particular RNA. Recent work by three different laboratories has led to the development of new tools to query such interactions in the more physiological environs of cultured cells. The use of these methods has led to insights into (1) the networks of RNAs regulated by a particular protein, (2) the identification of new protein partners within messenger ribonucleoprotein particles and (3) the flux of RNA-binding proteins on an mRNA throughout its lifecycle. Here, I examine these new methods and discuss their relative strengths and current limitations.  相似文献   

6.
7.
8.
9.
Emerging studies support that RNA-binding proteins(RBPs)play critical roles in human biology and pathogenesis.RBPs are essential players in RNA processing and metabolism,including pre-mRNA splicing,polyadenylation,transport,surveillance,mRNA localization,mRNA stability control,translational control and editing of various types of RNAs.Aberrant expression of and mutations in RBP genes affect various steps of RNA processing,altering target gene function.RBPs have been associated with various diseases,including neurological diseases.Here,we mainly focus on selected RNA-binding proteins including Nova-1/Nova-2,HuR/HuB/HuC/HuD,TDP-43,Fus,Rbfox1/Rbfox2,QKI and FMRP,discussing their function and roles in human diseases.  相似文献   

10.
11.
Insights into RNA biology from an atlas of mammalian mRNA-binding proteins   总被引:3,自引:0,他引:3  
RNA-binding proteins (RBPs) determine RNA fate from synthesis to decay. Employing two complementary protocols for covalent UV crosslinking of RBPs to RNA, we describe a systematic, unbiased, and comprehensive approach, termed "interactome capture," to define the mRNA interactome of proliferating human HeLa cells. We identify 860 proteins that qualify as RBPs by biochemical and statistical criteria, adding more than 300 RBPs to those previously known and shedding light on RBPs in disease, RNA-binding enzymes of intermediary metabolism, RNA-binding kinases, and RNA-binding architectures. Unexpectedly, we find that many proteins of the HeLa mRNA interactome are highly intrinsically disordered and enriched in short repetitive amino acid motifs. Interactome capture is broadly applicable to study mRNA interactome composition and dynamics in varied biological settings.  相似文献   

12.
RNA-binding proteins (RBPs) control RNA fate from synthesis to decay. Since their cellular expression levels frequently do not reflect their in vivo activity, methods are needed to assess the steady state RNA-binding activity of RBPs as well as their responses to stimuli. While electrophoresis mobility shift assays (EMSA) have been used for such determinations, their results serve at best as proxies for the RBP activities in living cells. Here, we describe a quantitative dual fluorescence method to analyze protein–mRNA interactions in vivo. Known or candidate RBPs are fused to fluorescent proteins (eGFP, YFP), expressed in cells, cross-linked in vivo to RNA by ultraviolet light irradiation, and immunoprecipitated, after lysis, with a single chain antibody fragment directed against eGFP (GFP-binding protein, GBP). Polyadenylated RNA-binding activity of fusion proteins is assessed by hybridization with an oligo(DT) probe coupled with a red fluorophore. Since UV light is directly applied to living cells, the assay can be used to monitor dynamic changes in RNA-binding activities in response to biological or pharmacological stimuli. Notably, immunoprecipitation and hybridization can also be performed with commercially available GBP-coupled 96-well plates (GFP-multiTrap), allowing highly parallel RNA-binding measurements in a single experiment. Therefore, this method creates the possibility to conduct in vivo high-throughput RNA-binding assays. We believe that this fast and simple radioactivity-free method will find many useful applications in RNA biology.  相似文献   

13.
14.
RNA-binding proteins (RBPs) are proteins that bind to the RNA and participate in forming ribonucleoprotein complexes. They have crucial roles in various biological processes such as RNA splicing, editing, transport, maintenance, degradation, intracellular localization and translation. The RBPs bind RNA with different RNA-sequence specificities and affinities, thus, identification of protein binding sites on RNAs (R-PBSs) will deeper our understanding of RNA-protein interactions. Currently, high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP, also known as CLIP-Seq) is one of the most powerful methods to map RNA-protein binding sites or RNA modification sites. However, this method is only used for identification of single known RBPs and antibodies for RBPs are required. Here we developed a novel method, called capture of protein binding sites on RNAs (RPBS-Cap) to identify genome-wide protein binding sites on RNAs without using antibodies. Double click strategy is used for the RPBS-Cap assay. Proteins and RNAs are UV-crosslinked in vivo first, then the proteins are crosslinked to the magnetic beads. The RNA elements associated with proteins are captured, reverse transcribed and sequenced. Our approach has potential applications for studying genome-wide RNA-protein interactions.  相似文献   

15.
16.
17.
Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.  相似文献   

18.
19.
Gene expression is controlled through a complex interplay among mRNAs, non-coding RNAs and RNA-binding proteins (RBPs), which all assemble along with other RNA-associated factors in dynamic and functional ribonucleoprotein complexes (RNPs). To date, our understanding of RBPs is largely limited to proteins with known or predicted RNA-binding domains. However, various methods have been recently developed to capture an RNA of interest and comprehensively identify its associated RBPs. In this review, we discuss the RNA-affinity purification methods followed by mass spectrometry analysis (AP-MS); RBP screening within protein libraries and computational methods that can be used to study the RNA-binding proteome (RBPome).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号