共查询到20条相似文献,搜索用时 0 毫秒
1.
Yoshikawa K Palumbo S Toscano CD Bosetti F 《Prostaglandins, leukotrienes, and essential fatty acids》2011,85(1):43-52
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Increased expression of 5-lipoxygenase (5-LO), a key enzyme in the biosynthesis of leukotrienes (LTs), has been reported in MS lesions and LT levels are elevated in the cerebrospinal fluid of MS patients. To determine whether pharmacological inhibition of 5-LO attenuates demyelination, MK886, a 5-LO inhibitor, was given to mice fed with cuprizone. Gene and protein expression of 5-LO were increased at the peak of cuprizone-induced demyelination. Although MK886 did not attenuate cuprizone-induced demyelination in the corpus callosum or in the cortex, it attenuated cuprizone-induced axonal damage and motor deficits and reduced microglial activation and IL-6 production. These data suggest that during cuprizone-induced demyelination, the 5-LO pathway contributes to microglial activation and neuroinflammation and to axonal damage resulting in motor dysfunction. Thus, 5-LO inhibition may be a useful therapeutic treatment in demyelinating diseases of the CNS. 相似文献
2.
Mi Tian Liu Qingzhen Yu Zhiyang Chen Chunlong Duan Jiao Lidong Zhang Weiyan Li 《Journal of cellular biochemistry》2019,120(5):7101-7108
Multiple studies demonstrated that sepsis is a life-threatening state of organ dysfunction caused by infection and can induce neuroinflammation and cognitive impairment. The aim of this study was to evaluate the protective effects of attractylone (Atr) on sepsis-associated encephalopathy (SAE) and cognitive dysfunction. Moreover, we studied the underlying molecular mechanisms. We used an LPS-induced sepsis mouse model and evaluated the cognitive function with the Morris water maze and open field test. Neuronal damage in the hippocampus was assessed by immunohistochemical analysis. BV2 cells were used to identify the protective mechanism of Atr. The result showed that Atr attenuated LPS-induced cognitive impairment, neural apoptosis, inflammatory factors, and microglial activation. The in vitro experiment showed that Atr promoted silent information regulator 1 (SIRT1) expression and suppressed NFκB expression. Downregulation of SIRT1 reversed the protective effect of Atr in the LPS condition. Moreover, Atr-induced SIRT1 expression promoted BV2 from LPS-induced M1 to M2 phenotype. Taken together, these results indicated that Atr was a potential therapeutic agent for SAE and cognitive dysfunction. 相似文献
3.
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are highly influenced by changes in the microbiota and of microbiota-derived metabolites, including short chain fatty acids, bile acids, and tryptophan derivatives. This review will discuss the effects of microbiota-derived metabolites on neuroinflammation driven by central nervous system-resident cells and peripheral immune cells, and their influence on outcomes of EAE and MS. 相似文献
4.
Multiple sclerosis (MS) is an autoimmune disease that leads to oligodendrocyte loss and subsequent demyelination of the adult central nervous system (CNS). The pathology is characterized by transient phases of recovery during which remyelination can occur as a result of resident oligodendroglial precursor and stem/progenitor cell activation. However, myelin repair efficiency remains low urging the development of new therapeutical approaches that promote remyelination activities. Current MS treatments target primarily the immune system in order to reduce the relapse rate and the formation of inflammatory lesions, whereas no therapies exist in order to regenerate damaged myelin sheaths. During the last few years, several transplantation studies have been conducted with adult neural stem/progenitor cells and glial precursor cells to evaluate their potential to generate mature oligodendrocytes that can remyelinate axons. In parallel, modulation of the endogenous progenitor niche by neural and mesenchymal stem cell transplantation with the aim of promoting CNS progenitor differentiation and myelination has been studied. Here, we summarize these findings and discuss the properties and consequences of the various molecular and cell-mediated remyelination approaches. Moreover, we address age-associated intrinsic cellular changes that might influence the regenerative outcome. We also evaluate the extent to which these experimental treatments might increase the regeneration capacity of the demyelinated human CNS and hence be turned into future therapies. 相似文献
5.
Ming‐Yuan Du Jia‐Xi Duan Chen‐Yu Zhang Hui‐Hui Yang Xin‐Xin Guan Wen‐Jing Zhong Yan‐Zhe Liu Zi‐Ming Li Yu‐Rui Cheng Yong Zhou Cha‐Xiang Guan 《Cell biology international》2020,44(1):98-107
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM‐induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM‐induced expression of α‐smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor‐β1, interleukin‐1β, and tumor necrosis factor‐α in the lungs of BLM‐stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM‐induced murine model. 相似文献
6.
Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation 下载免费PDF全文
Chenggui Wang Qingqing Wang Yiting Lou Jianxiang Xu Zhenhua Feng Yu Chen Qian Tang Gang Zheng Zengjie Zhang Yaosen Wu Naifeng Tian Yifei Zhou Huazi Xu Xiaolei Zhang 《Journal of cellular and molecular medicine》2018,22(2):1148-1166
Spinal cord injury (SCI) is a severe neurological disease; however, few drugs have been proved to treat SCI effectively. Neuroinflammation is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Salidroside (Sal) has been reported to exert anti‐inflammatory effects in airway, adipose and myocardial tissue; however, the role of Sal in SCI therapeutics has not been clarified. In this study, we showed that Sal could improve the functional recovery of spinal cord in rats as revealed by increased BBB locomotor rating scale, angle of incline, and decreased cavity of spinal cord injury and apoptosis of neurons in vivo. Immunofluorescence double staining of microglia marker and M1/M2 marker demonstrated that Sal could suppress M1 microglia polarization and activate M2 microglia polarization in vivo. To verify how Sal exerts its effects on microglia polarization and neuron protection, we performed the mechanism study in vitro in microglia cell line BV‐2 and neuron cell line PC12. The results showed that Sal prevents apoptosis of PC12 cells in coculture with LPS‐induced M1 BV‐2 microglia, also the inflammatory secretion phenotype of M1 BV‐2 microglia was suppressed by Sal, and further studies demonstrated that autophagic flux regulation through AMPK/mTOR pathway was involved in Sal regulated microglia polarization after SCI. Overall, our study illustrated that Sal could promote spinal cord injury functional recovery in rats, and the mechanism may relate to its microglia polarization modulation through AMPK‐/mTOR‐mediated autophagic flux stimulation. 相似文献
7.
Beyeen AD Adzemovic MZ Ockinger J Stridh P Becanovic K Laaksonen H Lassmann H Harris RA Hillert J Alfredsson L Celius EG Harbo HF Kockum I Jagodic M Olsson T 《Journal of immunology (Baltimore, Md. : 1950)》2010,185(11):6883-6890
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS. Recent advances in whole-genome screening tools have enabled discovery of several MS risk genes, the majority of which have known immune-related functions. However, disease heterogeneity and low tissue accessibility hinder functional studies of established MS risk genes. For this reason, the MS model experimental autoimmune encephalomyelitis (EAE) is often used to study neuroinflammatory disease mechanisms. In this study, we performed high-resolution linkage analysis in a rat advanced intercross line to identify an EAE-regulating quantitative trait locus, Eae29, on rat chromosome 1. Eae29 alleles from the resistant strain both conferred milder EAE and lower production of proinflammatory molecules in macrophages, as demonstrated by the congenic line, DA.PVG-Eae29 (Dc1P). The soluble IL-22R α2 gene (Il-22ra2) lies within the Eae29 locus, and its expression was reduced in Dc1P, both in activated macrophages and splenocytes from immunized rats. Moreover, a single nucleotide polymorphism located at the end of IL-22RA2 associated with MS risk in a combined Swedish and Norwegian cohort comprising 5019 subjects, displaying an odds ratio of 1.26 (p = 8.0 × 10(-4)). IL-22 and its receptors have been implicated in chronic inflammation, suggesting that IL-22RA2 regulates a central immune pathway. Through a combined approach including genetic and immunological investigation in an animal model and large-scale association studies of MS patients, we establish IL-22RA2 as an MS risk gene. 相似文献
8.
《The Journal of nutritional biochemistry》2014,25(2):201-207
Obesity is associated with metabolic disorders. Sulforaphane, an isothiocyanate, inhibits adipogenesis and the occurrence of cardiovascular disease. In this study, we investigated whether sulforaphane could prevent high-fat diet (HFD)-induced obesity in C57BL/6N mice. Mice were fed a normal diet (ND), HFD or HFD plus 0.1% sulforaphane (SFN) for 6 weeks. Food efficiency ratios and body weight were lower in HFD-SFN-fed mice than in HFD-fed mice. SFN attenuated HFD-induced visceral adiposity, adipocyte hypertrophy and fat accumulation in the liver. Serum total cholesterol and leptin, and liver triglyceride levels were lower in HFD-SFN-fed mice than in HFD-fed mice. SFN decreased the expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and leptin in the adipose tissue of HFD-SFN mice and increased adiponectin expression. Phosphorylation of AMP-activated protein kinase α (AMPKα) and acetyl-CoA carboxylase in the adipose tissue of HFD-SFN-fed mice was elevated, and HMG-CoA reductase expression was decreased compared with HFD-fed mice. Thus, these results suggest that SFN may induce antiobesity activity by inhibiting adipogenesis through down-regulation of PPARγ and C/EBPα and by suppressing lipogenesis through activation of the AMPK pathway. 相似文献
9.
Yang X Zhang Y Li S Liu C Jin Z Wang Y Ren F Chang Z 《Biochemical and biophysical research communications》2012,421(4):651-657
Epidermal growth factor (EGF) receptor (EGFR) signal transduction is regulated by endocytosis where many Rab proteins play an important role in the determination of the receptor recycle or degradation. In an effort to better understand how EGF signaling is regulated, we examined the role of Rab21 in regulation of the degradation and signal transduction of the EGFR. Using a transient expression protocol in HEK293T and HeLa cells, we found that Rab21 enhanced the degradation of EGFR through accelerating its internalization in both EGF-independent and EGF-dependent manners. We further demonstrated that Rab21 interacted with EGFR by immunoprecipitation experiments. Interestingly, we observed that overexpression of Rab21 attenuated EGF-mediated mitogen-activated protein kinase (MAPK) signaling by inducing EGFR degradation. Taken together, these data suggest that Rab21 plays a negative role in the EGF-mediated MAPK signaling pathway. 相似文献
10.
Mojaverrostami Sina Khadivi Farnaz Zarini Davood Mohammadi Alireza 《Journal of molecular histology》2022,53(5):817-831
Journal of Molecular Histology - Multiple sclerosis (MS) has no absolute treatment, and researchers are still exploring to introduce promising therapy for MS. Transcranial direct current... 相似文献
11.
Feng Zhou Jingtian Mei Kai Yuan Xiuguo Han Han Qiao Tingting Tang 《Journal of cellular and molecular medicine》2019,23(6):4395-4407
Increasing evidence indicates that osteoarthritis (OA) is a musculoskeletal disease affecting the whole joint, including both cartilage and subchondral bone. Reactive oxygen species (ROS) have been demonstrated to be one of the important destructive factors during early‐stage OA development. The objective of this study was to investigate isorhamnetin (Iso) treatment on osteoclast formation and chondrocyte protection to attenuate OA by modulating ROS. Receptor activator of nuclear factor‐kappa B ligand (RANKL) was used to establish the osteoclast differentiation model in bone marrow macrophages (BMMs) in vivo. H2O2 was used to induce ROS, which could further cause chondrocyte apoptosis. We demonstrated that Iso suppressed RANKL‐induced ROS generation, which could mediate osteoclastogenesis. Moreover, we found that Iso inhibited osteoclast formation and function by suppressing the expression of osteoclastogenesis‐related genes and proteins. We proved that Iso inhibited RANKL‐induced activation of mitogen‐activated protein kinase activation of mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF‐κB) and AKT signalling pathways in BMMs. In addition, Iso inhibited ROS‐induced chondrocyte apoptosis by regulating apoptosis‐related proteins. Moreover, Iso was administered to an anterior cruciate ligament transection (ACLT)‐induced OA mouse model. The results indicated that Iso exerted beneficial effects on inhibiting excessive osteoclast activity and chondrocyte apoptosis, which further remedied cartilage damage. Overall, our data showed that Iso is an effective candidate for treating OA. 相似文献
12.
Kanno Yosuke Shu En Niwa Hirofumi Seishima Mariko Ozaki Kei-ichi 《Molecular biology reports》2021,48(4):3431-3437
Molecular Biology Reports - Systemic sclerosis (SSc) is characterized by peripheral circulatory disturbance and fibrosis in skin and visceral organs. We recently demonstrated that... 相似文献
13.
Shen Xiaoyan Yuan Guiqiang Li Bing Cao Cheng Cao Demao Wu Jiang Li Xiang Li Haiying Shen Haitao Wang Zhong Chen Gang 《Molecular biology reports》2022,49(3):2107-2118
Molecular Biology Reports - Early brain injury (EBI) has been considered as the major contributor to the neurological dysfunction and poor clinical outcomes of subarachnoid hemorrhage (SAH).... 相似文献
14.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2019,1863(9):1360-1370
BackgroundRenal fibrosis is a common pathological hallmark of chronic kidney disease, and no effective treatment is clinically available to manage its progression. Astaxanthin was recently found to be anti-fibrotic, but its effect on renal fibrosis remains unclear.MethodsC57BL/6J mice were subjected to unilateral ureteral obstruction and intragastrically administered astaxanthin. Histopathology and immunohistochemistry were performed to evaluate renal fibrosis. Flow cytometry was used to examine lymphocyte accumulation in the fibrotic kidneys. Western blotting, real-time qPCR, and immunofluorescence were performed to cover the underlying mechanism concerning astaxanthin treatment during renal fibrosis.ResultsOral administration of astaxanthin effectively alleviates renal fibrosis in mice. In vitro, astaxanthin inhibited fibroblast activation by modulating Smad2, Akt and STAT3 pathways and suppressed epithelial-to-mesenchymal transition in renal tubular epithelial cells through Smad2, snail, and β-catenin. Moreover, astaxanthin significantly induced the rapid accumulation of CD8+ T cells in fibrotic kidneys, which was accompanied by elevated expression of IFN-γ. Accordingly, the depletion of CD8+ T cells strongly diminished the protective effect of astaxanthin. Further investigation showed that astaxanthin increased the population of CD8+ T cells by upregulating the expression of CCL5 in macrophages.ConclusionsThese findings highlight the beneficial effect of astaxanthin on fibroblast activation, epithelial-to-mesenchymal transition, and CD8+ T cell recruitment during renal fibrosis.General significanceThese data indicate that astaxanthin could serve as a therapeutic strategy to treat renal fibrotic conditions. 相似文献
15.
16.
Maohua Wang Jingyong Zhang Xuejun Wu Xing Jin Baoxiang Zhao Lu Zhang Hai Yuan Hua Zhou Binbin Gao Wei Lv Xiangqian Kong Junying Miao 《Molecular biology reports》2011,38(3):1491-1497
Human umbilical cord vascular endothelial cells (HUVECs) cultured without serum and fibroblast growth factor-2 is an in vitro model of ischemic conditions. Our previous study showed that ethyl 3-(o-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazole-4-carboxylate (MPD) could inhibit apoptosis of HUVECs in this model. In this study, we investigated the effect of MPD on angiogenesis and the possible mechanisms. Capillary-like tube formation assay on Matrigel and cell migration assay were performed to investigate the effect of MPD on angiogenesis. The reactive oxygen species (ROS) and interferon-inducible protein 10 (IP-10) levels were respectively evaluated by intracellular ROS assay and western blot analysis. MPD at 5 and 10 ??M promoted vascular structure formation and HUVEC migration in an in vitro ischemic model. MPD promoted angiogenesis through elevating ROS levels and depressing IP-10 level. ROS seemed to be necessary for angiogenesis, and a high level of IP-10 inhibited angiogenesis in ischemic state. ROS provide clues for seeking new key factors involved in angiogenesis. IP-10 may become a new target for future therapeutic intervention. MPD is a good tool for investigating the mechanism of angiogenesis, and MPD might be useful in the development of new drugs in therapy of ischemic diseases. 相似文献
17.
Lesions in the CNS of patients with multiple sclerosis (MS) often fail to remyelinate, resulting in neurological dysfunction. A key factor seems to be the inefficiency of oligodendrocyte precursor cells (OPCs). We recently reported antibodies against heat shock protein 90beta (Hsp90beta) in MS patients that recognized the antigen on the OPC surface. This study investigates the mechanism and result of anti-Hsp90beta antibody attack. These antibodies induced OPC death in culture in a complement-dependent fashion. Anti-Hsp90beta antibody-induced, complement-mediated OPC death only operated in these cells and caused a significant reduction in the number of O4-positive pro-oligodendrocytes (pre-oligodendrocytes). Adult cultured OPCs also expressed Hsp90beta on their cell surface and were attacked by anti-Hsp90beta antibodies leading to a significant decrease in the pre-oligodendrocyte population. In the presence of low levels of anti-Hsp90beta antibody--i.e. in the range seen in the CSF of MS patients--the complement concentration was critical to reduce the pre-oligodendrocyte population (via attack to OPCs). Higher concentrations of anti-Hsp90beta antibodies and complement became extinct the pre-oligodendrocytes. Complement 1-esterase inhibitor prevented these effects in the pre-oligodendrocyte population. These findings demonstrate, for the first time in vitro, a feasible mechanism to decrease the production of new oligodendrocytes, thus limiting the possibility of remyelination. 相似文献
18.
Yuancheng Mao Eun Lee Xiaohui Yang Eun Ju Bae Raok Jeon Byung-Hyun Park 《Journal of enzyme inhibition and medicinal chemistry》2022,37(1):2133
p21-Activated kinase 4 (PAK4), one of the serine/threonine kinases activated by Rho-family GTPases, has been widely studied as an oncogenic protein that is overexpressed in many types of cancers. In our recent study, PAK4 upregulation was observed in mice exhibiting hepatic ischaemia-reperfusion (I/R) and in liver transplantation patients. Liver I/R injury was also attenuated in Pak4 KO mice. Herein, we report a novel series of pyrazolo[3,4-d]pyrimidine derivatives of type I ½ PAK4 inhibitors. The most potent compound SPA7012 was evaluated to determine the pharmacological potential of PAK4 inhibitor in I/R injury in mice. Mice with I/R injury showed typical patterns of liver damage, as demonstrated by increases in serum levels of aminotransferases and proinflammatory cytokines, hepatocellular necrosis and apoptosis, and inflammatory cell infiltration, relative to sham mice. Conversely, intraperitoneal administration of SPA7012 dramatically attenuated biochemical and histopathologic changes. Mechanistically, stabilisation of nuclear factor-erythroid 2-related factor 2 (Nrf2), a master regulator of anti-oxidative response, was observed following SPA7012 treatment. SPA7012 treatment in primary hepatocytes also attenuated hypoxia-reoxygenation-induced apoptotic cell death and inflammation. Together, these results provide experimental evidence supporting the use of PAK4 inhibitors for alleviation of I/R-induced liver damage. 相似文献
19.
Y Liu L Zhao Y Ju W Li M Zhang Y Jiao J Zhang S Wang Y Wang M Zhao B Zhang Y Zhao 《Cell death & disease》2014,5(8):e1361
Osteosarcoma is a common primary bone tumor in children and adolescents. The drug resistance of osteosarcoma leads to high lethality. Macrophage migration inhibitory factor (MIF) is an inflammation-related cytokine implicated in the chemoresistance of breast cancer. In this study, we isolated a novel androstenedione derivative identified as 3,4-dihydroxy-9,10-secoandrosta-1,3,5,7-tetraene-9,17-dione (DSTD). DSTD could inhibit MIF expression in MG-63 and U2OS cells. The inhibition of MIF by DSTD promoted autophagy by inducing Bcl-2 downregulation and the translocation of HMGB1. N-acetyl-L-cysteine (NAC) and 3-methyladenine (3-MA) attenuated DSTD-induced autophagy but promoted cell death, suggesting that DSTD induced ROS-mediated autophagy to rescue cell death. However, in the presence of chemotherapy drugs, DSTD enhanced the chemosensitivity by decreasing the HMGB1 level. Our data suggest MIF inhibition as a therapeutic strategy for overcoming drug resistance in osteosarcoma.Osteosarcoma, a common primary bone tumor in children and adolescents, is prone to early metastasis through blood.1 Treatment with a combination of surgery and aggressive adjuvant chemotherapy has improved the survival rate of osteosarcoma patients. The 5-year-survival rates of non-metastatic patients have reached a plateau of approximately 70%.2, 3 However, patients with poor responses to chemotherapeutics will undergo local recurrence and metastasis, which reduce the 5-year-survival rates to only 20% despite additional doses or drugs.4, 5 Drug resistance is responsible for the poor prognosis. Attenuating chemoresistance facilitates better treatment of osteosarcoma.6, 7 Novel treatment strategies that combine anticancer drugs with adjuvant agents could improve the antitumor effects.8, 9In the 1960s, macrophage migration inhibitory factor (MIF) was identified as a pluripotent protein that modulates inflammation.10 Increasing evidence suggests that inflammation is closely related to tumorigenesis.11 MIF plays a bridging role between inflammation and tumorigenesis.12, 13, 14 MIF triggers the activation of the MAPK and PI3K pathways by binding its membrane receptor CD74, resulting in the inhibition of cell apoptosis.15 Recently, MIF was demonstrated to be involved in cell proliferation, differentiation, angiogenesis and tumorigenesis.16, 17, 18 Some evidence has indicated that MIF is abundantly expressed in various cancers and is significantly associated with tumor invasion and metastasis.19, 20, 21 MIF has been well established to be involved in the development of glioblastoma,22 breast cancer,23 bladder cancer24 and colon cancer.20, 25 MIF was also upregulated in osteosarcoma.26, 27 The knockdown of MIF blocked osteosarcoma cell proliferation and invasion.26 However, the effect of MIF on drug resistance in osteosarcoma has not yet been investigated. Wu et al.
23 have revealed that MIF knockdown promoted chemosensitivity by inducing autophagy in breast cancer. In contrast, autophagy reportedly contributed to chemoresistance in osteosarcoma.6 These controversial results prompted us to confirm the role of MIF in drug resistance in osteosarcoma.In this study, we isolated a novel androstenedione derivative identified as 3,4-dihydroxy-9,10-secoandrosta-1,3,5,7-tetraene-9,17-dione (DSTD). DSTD could inhibit MIF expression in MG-63 and U2OS cells. Both N-acetyl-L-cysteine (NAC) and 3-methyladenine (3-MA) attenuated DSTD-induced autophagy but promoted cell death, suggesting that DSTD induced reactive oxygen species (ROS)-mediated autophagy to rescue cell death. Furthermore, MIF inhibition by DSTD enhances chemosensitivity by downregulating HMGB1 in osteosarcoma cells. Our data suggest MIF inhibition as a therapeutic strategy for overcoming drug resistance in osteosarcoma. 相似文献
20.
Mozafari Haniyeh Amiri Shayan Mehr Shahram Ejtemaei Momeny Majid Amini-khoei Hossein Bijani Soroush Hosseini Mir-Jamal 《Molecular biology reports》2020,47(8):6143-6153
Molecular Biology Reports - Neuroinflammation and mitochondrial dysfunction are suggested as mechanisms which are implicated in the pathophysiology of depression. Streptozotocin (STZ) is known to... 相似文献