首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The program of cellular senescence is involved in both the G1 and G2 phase of the cell cycle, limiting G1/S and G2/M progression respectively, and resulting in prolonged cell cycle arrest. Cellular senescence is involved in normal wound healing. However, multiple organs display increased senescent cell numbers both during natural aging and after injury, suggesting that senescent cells can have beneficial as well as detrimental effects in organismal aging and disease. Also in the kidney, senescent cells accumulate in various compartments with advancing age and renal disease. In experimental studies, forced apoptosis induction through the clearance of senescent cells leads to better preservation of kidney function during aging. Recent groundbreaking studies demonstrate that senescent cell depletion through INK-ATTAC transgene-mediated or cell-penetrating FOXO4-DRI peptide induced forced apoptosis, reduced age-associated damage and dysfunction in multiple organs, in particular the kidney, and increased performance and lifespan. Senescence is also involved in oncology and therapeutic depletion of senescent cells by senolytic drugs has been studied in experimental and human cancers. Although studies with senolytic drugs in models of kidney injury are lacking, their dose limiting side effects on other organs suggest that targeted delivery might be needed for successful application of senolytic drugs for treatment of kidney disease. In this review, we discuss (i) current understanding of the mechanisms and associated pathways of senescence, (ii) evidence of senescence occurrence and causality with organ injury, and (iii) therapeutic strategies for senescence depletion (senotherapy) including targeting, all in the context of renal aging and disease.  相似文献   

2.
Cellular senescence is an anti‐proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell‐autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non‐cell‐autonomous manner. These non‐cell‐autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence‐associated secretory phenotype. One of the key functions of the senescence‐associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti‐cancer and anti‐aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential.  相似文献   

3.

Background  

Cellular senescence plays important roles in the aging process of complex organisms, in tumor suppression and in response to stress. Several markers can be used to identify senescent cells, of which the most widely used is the senescence-associated β-galactosidase (SABG) activity. The main advantage of SABG activity over other markers is the simplicity of the detection assay and the capacity to identify in situ a senescent cell in a heterogeneous cell population. Several approaches have been introduced to render the SABG assay quantitative. However none of these approaches to date has proven particularly amenable to quantitative analysis of SABG activity in situ. Furthermore the role of cellular senescence (CS) in vivo remains unclear mainly due to the ambiguity of current cellular markers in identifying CS of individual cells in tissues.  相似文献   

4.
衰老是一个新兴的重要研究领域,随着该领域相关知识的积累和技术的进步,人们逐渐意识到衰老本身可以被针对性地干预,实现延长寿命并且延缓衰老相关疾病的发生发展,具有重要的科学和现实意义.引起个体衰老的众多因素中,衰老细胞的积累被认为是导致器官衰老发生退行性变,最终引起衰老相关疾病的重要原因.近年来,多项研究表明,清除体内衰老细胞可以延缓多种衰老相关疾病的发生,直接证明了衰老细胞是导致衰老相关疾病的重要原因之一,为治疗衰老相关疾病提供了新靶点.细胞衰老是由于损伤积累诱发了细胞周期抑制通路的激活,细胞永久地退出细胞增殖周期.衰老细胞会发生细胞形态、转录谱、蛋白质稳态、表观遗传以及代谢等系列特征的改变,同时衰老细胞对凋亡发生抵抗从而在体内多器官组织积累.衰老细胞会激活炎症因子分泌通路,导致组织局部非感染性炎症微环境,进而导致器官退行性变及多种衰老相关疾病的发生发展.因此针对衰老细胞对凋亡抵抗的特性,多个研究小组通过筛选小分子化合物库,发现某些化合物能够选择性清除衰老细胞,这些小分子化合物被称为"senolytics",意为"衰老细胞杀伤性化合物".衰老细胞杀伤性化合物在多种衰老相关疾病动物模型中能够延缓疾病的发展并延长哺乳动物寿命.因此,靶向杀伤衰老细胞对多种衰老相关疾病的治疗从而提高健康寿命具有重要的临床应用前景.除靶向杀伤衰老细胞策略以外,干细胞移植、基因编辑、异体共生等策略在抗衰老研究发展中也具有重要意义,具有启发性.本文通过汇总近期衰老细胞清除领域的重要进展和多种抗衰老策略,将细胞衰老研究发展史做简要梳理,就细胞衰老与衰老相关疾病的关系作一综述,重点讨论衰老细胞在多种衰老相关疾病中作为治疗靶点的应用潜力,并就其局限性和进一步的研究方向进行探讨.  相似文献   

5.
Therapy-induced cellular senescence describes the phenomenon of cell cycle arrest that can be invoked in cancer cells in response to chemotherapy. Sustained proliferative arrest is often overcome as a contingent of senescent tumor cells can bypass this cell cycle restriction. The mechanism regulating cell cycle re-entry of senescent cancer cells remains poorly understood. This is the first report of the isolation and characterization of two distinct transitional states in chemotherapy-induced senescent cells that share indistinguishable morphological senescence phenotypes and are functionally classified by their ability to escape cell cycle arrest. It has been observed that cell surface expression of coxsackie and adenovirus receptor (CAR) is downregulated in cancer cells treated with chemotherapy. We show the novel use of surface CAR expression and adenoviral transduction to differentiate senescent states and also show in vivo evidence of CAR downregulation in colorectal cancer patients treated with neoadjuvant chemoradiation. This study suggests that CAR is a candidate biomarker for senescence response to antitumor therapy, and CAR expression can be used to distinguish transitional states in early senescence to study fundamental regulatory events in therapy-induced senescence.  相似文献   

6.
Deletion and mutation of phosphatase and tensin homolog deleted on chromosome10 (PTEN) are closely associated with the occurrence of tumors. Tumor suppressor gene PTEN mutation plays an important role in the pathogenesis of ovarian cancer. However, it has been unclear whether it can regulate the senescence of ovarian cancer cells. We speculated that PTEN might inhibit the occurrence and development of ovarian cancer by promoting the expression of P21. We found that the expression of TRIM39 in human ovarian cancer was significantly diminished. In SKOV3 cells treated with naringin, the expression of TRIM39, which binds P21 and inhibits P21 degradation, was significantly elevated. Real-time polymerase chain reaction (PCR), Western blot, and immunofluorescence were used to detected the expression of PTEN, p21, and TRIM39, β-galactosidase Staining was used to detect cell senescence, Ki67 staining was used to observe cell proliferation, Trim39 interference or overexpression assay was used to detect its function. We speculated that PTEN might promote SKOV3 cell senescence by increasing TRIM39 expression and decreasing P21 degradation. Furthermore, by interfering with TRIM39 in SKOV3 cells, we found that the expression of P21 was downregulated, and the number of senescent SKOV3 cells decreased. With overexpression of TRIM39 in SKOV3 cells, the expression of P21 was upregulated, and the number of senescent SKOV3 cells increased. When naringin, a PTEN agonist, was added to SKOV3 cells in which TRIM39 protein was interfered with, the expression of P21 was significantly lower than that in the control group, and the number of senescent ovarian cancer cells was significantly diminished. Our results indicated that PTEN maintained the stability of P21 and decreased the degradation of P21 by increasing TRIM39 expression, thus promoting the senescence of SKOV3 cells, and PTEN maintained the stability of p21 and promoted the aging of SKOV3 cells might be a novel therapeutic target for ovarian cancer.  相似文献   

7.
Campisi J 《Cell》2005,120(4):513-522
Cells from organisms with renewable tissues can permanently withdraw from the cell cycle in response to diverse stress, including dysfunctional telomeres, DNA damage, strong mitogenic signals, and disrupted chromatin. This response, termed cellular senescence, is controlled by the p53 and RB tumor suppressor proteins and constitutes a potent anticancer mechanism. Nonetheless, senescent cells acquire phenotypic changes that may contribute to aging and certain age-related diseases, including late-life cancer. Thus, the senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate.  相似文献   

8.
Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to tumorigenesis and is a determinant of the outcome of cancer treatment. However, the senescence-associated secretory phenotype, which contributes to multiple facets of senescent cancer cells, may influence both cancer-inhibitory and cancer-promoting mechanisms of neighboring cells. Conventional treatments, such as chemo- and radiotherapies, preferentially induce premature senescence instead of apoptosis in the appropriate cellular context. In addition, treatment-induced premature senescence could compensate for resistance to apoptosis via alternative signaling pathways. Therefore, we believe that an intensive effort to understand cancer cell senescence could facilitate the development of novel therapeutic strategies for improving the efficacy of anticancer therapies. This review summarizes the current understanding of molecular mechanisms, functions, and clinical applications of cellular senescence for anticancer therapy. [BMB Reports 2014; 47(2): 51-59]  相似文献   

9.
The idea that senescent cells are causally involved in aging has gained strong support from findings that the removal of such cells alleviates many age‐related diseases and extends the life span of mice. While efforts proceed to make therapeutic use of such discoveries, it is important to ask what evolutionary forces might have been behind the emergence of cellular senescence, in order better to understand the biology that we might seek to alter. Cellular senescence is often regarded as an anti‐cancer mechanism, since it limits the division potential of cells. However, many studies have shown that senescent cells often also have carcinogenic properties. This is difficult to reconcile with the simple idea of an anti‐cancer mechanism. Furthermore, other studies have shown that cellular senescence is involved in wound healing and tissue repair. Here, we bring these findings and ideas together and discuss the possibility that these functions might be the main reason for the evolution of cellular senescence. Furthermore, we discuss the idea that senescent cells might accumulate with age because the immune system had to strike a balance between false negatives (overlooking some senescent cells) and false positives (destroying healthy body cells).  相似文献   

10.
Cellular senescence is a typical tumor‐suppressive mechanism that restricts the proliferation of premalignant cells. However, mounting evidence suggests that senescent cells, which also persist in vivo, can promote the incidence of aging‐related disorders principally via the senescence‐associated secretory phenotype (SASP), among which cancer is particularly devastating. Despite the beneficial effects of the SASP on certain physiological events such as wound healing and tissue repair, more studies have demonstrated that senescent cells can substantially contribute to pathological conditions and accelerate disease exacerbation, particularly cancer resistance, relapse and metastasis. To limit the detrimental properties while retaining the beneficial aspects of senescent cells, research advancements that support screening, design and optimization of anti‐aging therapeutic agents are in rapid progress in the setting of prospective development of clinical strategies, which together represent a new wave of efforts to control human malignancies or mitigate degenerative complications.  相似文献   

11.
12.
The accumulation of senescent disc cells in degenerative intervertebral disc (IVD) suggests the detrimental roles of cell senescence in the pathogenesis of intervertebral disc degeneration (IDD). Disc cell senescence decreased the number of functional cells in IVD. Moreover, the senescent disc cells were supposed to accelerate the process of IDD via their aberrant paracrine effects by which senescent cells cause the senescence of neighboring cells and enhance the matrix catabolism and inflammation in IVD. Thus, anti-senescence has been proposed as a novel therapeutic target for IDD. However, the development of anti-senescence therapy is based on our understanding of the molecular mechanism of disc cell senescence. In this review, we focused on the molecular mechanism of disc cell senescence, including the causes and various molecular pathways. We found that, during the process of IDD, age-related damages together with degenerative external stimuli activated both p53-p21-Rb and p16-Rb pathways to induce disc cell senescence. Meanwhile, disc cell senescence was regulated by multiple signaling pathways, suggesting the complex regulating network of disc cell senescence. To understand the mechanism of disc cell senescence better contributes to developing the anti-senescence-based therapies for IDD.  相似文献   

13.
《Reproductive biology》2023,23(1):100734
Cellular senescence (CS) is defined as a state of terminal proliferation arrest accompanied by morphological alterations, pro-inflammatory phenotype, and metabolic changes. In recent years, the implications of senescence in numerous physiological and pathological conditions such as development, tissue repair, aging, or cancer have been evident. Some inductors of senescence are tissue repair pathways, telomere shortening, DNA damage, degenerative disorders, and wound healing. Lately, it has been demonstrated that CS plays a decisive role in the development and progression of healthy pregnancy and labor. Premature maternal-fetal tissues senescence (placenta, choriamniotic membranes, and endothelium) is implicated in many adverse pregnancy outcomes, including fetal growth restriction, preeclampsia, preterm birth, and intrauterine fetal death. Here we discuss cellular senescence and its association with normal pregnancy development and adverse pregnancy outcomes. Current evidence allows us to establish the relevance of CS in processes associated with the appropriate development of placentation, the progression of pregnancy, and the onset of labor; likewise, it allows us to understand the undeniable participation of CS deregulation in pathological processes associated with pregnancy.  相似文献   

14.
Senescent cells accumulate in tissues during aging and are considered to underlie several aging‐associated phenotypes and diseases. We recently reported that the elimination of p19ARF‐expressing senescent cells from lung tissue restored tissue function and gene expression in middle‐aged (12‐month‐old) mice. The aging of lung tissue increases the risk of pulmonary diseases such as emphysema, and cellular senescence is accelerated in emphysema patients. However, there is currently no direct evidence to show that cellular senescence promotes the pathology of emphysema, and the involvement of senescence in the development of this disease has yet to be clarified. We herein demonstrated that p19ARF facilitated the development of pulmonary emphysema in mice. The elimination of p19ARF‐expressing cells prevented lung tissue from elastase‐induced lung dysfunction. These effects appeared to depend on reduced pulmonary inflammation, which is enhanced after elastase stimulation. Furthermore, the administration of a senolytic drug that selectively kills senescent cells attenuated emphysema‐associated pathologies. These results strongly suggest the potential of senescent cells as therapeutic/preventive targets for pulmonary emphysema.  相似文献   

15.
Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence.Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.  相似文献   

16.
Cigarette smoke (CS) leads to increased oxidative stress, inflammation, and exaggerated senescence, which are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). While the role of cellular senescence in COPD is known, it is not clear if the removal of senescent cells could alleviate the disease symptoms. To test this, we used the novel mouse model-p16-3MR, and studied the effect of ganciclovir (GCV)-mediated removal of senescent cells after chronic CS (3 months) and environmental tobacco smoke (ETS) (6 months) exposure to CS. Our results showed the reversal of CS-induced cellular senescence on the clearance of p16+ senesced cells by GCV treatment. Interestingly, the clearance of p16+ senescent cells via GCV led to a decrease in the neutrophil counts in the BALF of GCV-treated CS-exposed p16-3MR mice, as well as reversal of CS-mediated airspace enlargement in p16-3MR mice. Mice exposed to low dose ETS caused insignificant changes in the SA-β-Gal+ senescent cells and airspace enlargement. Overall, our data provide evidence for the role of lung cellular senescence on smoke exposure and clearance of senescent cells in p16-3MR mice in the reversal of COPD/emphysema pathology with a possibility of senolytics as therapeutic interventions in COPD.  相似文献   

17.
Cellular senescence is the permanent arrest of cell cycle, physiologically related to aging and aging-associated diseases. Senescence is also recognized as a mechanism for limiting the regenerative potential of stem cells and to protect cells from cancer development. The senescence program is realized through autocrine/paracrine pathways based on the activation of a peculiar senescence-associated secretory phenotype (SASP). We show here that conditioned media (CM) of senescent mesenchymal stem cells (MSCs) contain a set of secreted factors that are able to induce a full senescence response in young cells. To delineate a hallmark of stem cells SASP, we have characterized the factors secreted by senescent MSC identifying insulin-like growth factor binding proteins 4 and 7 (IGFBP4 and IGFBP7) as key components needed for triggering senescence in young MSC. The pro-senescent effects of IGFBP4 and IGFBP7 are reversed by single or simultaneous immunodepletion of either proteins from senescent-CM. The blocking of IGFBP4/7 also reduces apoptosis and promotes cell growth, suggesting that they may have a pleiotropic effect on MSC biology. Furthermore, the simultaneous addition of rIGFBP4/7 increased senescence and induced apoptosis in young MSC. Collectively, these results suggest the occurrence of novel-secreted factors regulating MSC cellular senescence of potential importance for regenerative medicine and cancer therapy.  相似文献   

18.
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, e.g. atherosclerosis. In this study, induction of Angiotensin II (Ang II) promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cell, and depressed cell proliferation. Apoptotic changes were increased in senescent cells, with a small subset of the senescent cells showing aberrant morphology such as pronounced nuclear fragmentation or multiple micronuclei. The results suggest cell apoptosis is possibly an important factor in the process of pathologic and physiologic senescence of endothelial cells as well as vascular aging.  相似文献   

19.
Cellular senescence has been associated with age-related diseases, wound healing, fibrosis, diabetes and cancer. Senescent cells lack the capacity to proliferate, but are known to aggravate tumorigenesis. The polyploid giant cells arise from the cancer cell population mainly due to genotoxic stress caused by chemotherapy and/or radiotherapy. They exhibit features of senescence and have been reported to secrete an array of cytokines, chemokines and growth factors. These small molecules can bind to their receptors located on the surface of neighboring cells and activate/deactivate relevant signaling pathways, thereby modulating the tumor microenvironment. Some of these signaling cascade(s) might play a role in imparting therapy resistance to the cancer cells. This review throws light on the incidence of senescence and how the senescent polyploid giant cells affect the tumor microenvironment. Their role in giving rise to chemoresistant cancer cell population as well as acquired chemoresistance in the neighboring cancer cells along with various potential and established therapeutic avenues have also been discussed.  相似文献   

20.
Cellular senescence plays an important role in organismal aging and age‐related diseases. However, it is challenging to isolate low numbers of senescent cells from small volumes of biofluids for downstream analysis. Furthermore, there is no technology that could selectively remove senescent cells in a high‐throughput manner. In this work, we developed a novel microfluidic chip platform, termed senescence chip, for ultrahigh‐throughput isolation and removal of senescent cells. The core component of our senescence chip is a slanted and tunable 3D micropillar array with a variety of shutters in the vertical direction for rapid cell sieving, taking advantage of the characteristic cell size increase during cellular senescence. The 3D configuration achieves high throughput, high recovery rate, and device robustness with minimum clogging. We demonstrated proof‐of‐principle applications in isolation and enumeration of senescent mesenchymal stem cells (MSCs) from undiluted human whole blood, and senescent cells from mouse bone marrow after total body irradiation, with the single‐cell resolution. After scale‐up to a multilayer and multichannel structure, our senescence chip achieved ultrahigh‐throughput removal of senescent cells from human whole blood with an efficiency of over 70% at a flow rate of 300 ml/hr. Sensitivity and specificity of our senescence chips could be augmented with implementation of multiscale size separation, and identification of background white blood cells using their cell surface markers such as CD45. With the advantages of high throughput, robustness, and simplicity, our senescence chips may find wide applications and contribute to diagnosis and therapeutic targeting of cellular senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号