首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A photoreactive radioiodinatable derivative of 2-deoxy-2,3-didehydro-5-N-acetylneuraminic acid (NeuAc2en), 5-N-acetyl-9-(4-azidosalicoylamido)-2-deoxy-2,3-didehydroneuram inic acid (ASA-NeuAc2-en) has been synthesized and used to label the active site of Clostridium perfringens sialidase. Like NeuAc2en, its aryl azide derivative is a strong competitive inhibitor of sialidase (Ki approximately 15 microM). The absorbance spectrum of ASA-NeuAc2en shows a characteristic aryl azide peak, which disappears upon photolysis with UV light. When its radioiodinated counterpart 5-N-acetyl-9-(4-iodoazidosalicoylamido)-2-deoxy-2,3-didehydrone uraminic acid ([125I]IASA-NeuAc2en) was photolyzed in the presence of C. perfringens sialidase a 72-kDa protein was labeled. Labeling occurred specifically in the active site since it was inhibited in the presence of NeuAc2en. Chemical cleavage of the photoaffinity-labeled 72-kDa protein demonstrates that specifically labeled peptides involved in the formation of the active site can easily be determined. ASA-NeuAc2en is a valuable new tool for the identification and structural/functional analysis of sialidases and other proteins, recognizing this sialic acid derivative.  相似文献   

2.
Structure-activity relationships of recombinant human interleukin 2   总被引:4,自引:0,他引:4  
Structure-activity relationships of recombinant human interleukin 2 were investigated by preparation, purification, and characterization of 21 missense mutants. A key role for residue Phe42 in the high-affinity interaction with receptor was indicated by (a) the reduction of 5-10-fold in binding affinity and bioactivity upon mutation of this residue to Ala and (b) the lack of evidence for conformational perturbation in Phe42----Ala in comparison with the wild-type protein as investigated by intrinsic fluorescence, second-derivative UV spectroscopy, electrophoresis, and reversed-phase HPLC, suggesting that the drop in binding is a direct effect of removal of the aromatic ring. In contrast, the conservative mutations Phe42----Tyr and Phe42----Trp did not cause significant reductions in bioactivity. UV and fluorescence spectra indicated approximately 60% overall exposure to solvent of tyrosines in the wild-type molecule, the tryptophan (residue 121) being buried; fluorescence data also showed that Trp42 in Phe42----Trp is likely to be within 1 nm of Trp121 and about 50% exposed to solvent. Phe44----Ala, Cys105----Ala, and Trp121----Tyr also exhibited reduced bioactivity, but these mutants are conformationally perturbed relative to wild type. None of the remaining mutants had detectably reduced bioactivity, even though several showed signs of altered conformation. Four mutants were recovered in very low yield, probably because of defective refolding.  相似文献   

3.
An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr182 in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr182 was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr182 significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.  相似文献   

4.
A vector for site-directed mutagenesis and overproduction of the Escherichia coli single-stranded-DNA-binding protein (E. coli SSB) was constructed. An E. coli strain carrying this vector produces up to 400 mg pure protein from 25 g wet cells. The vector was used to mutate specifically the Phe60 residue of E. coli SSB. Phe60 had been proposed to be located near the single-stranded-DNA-binding site. Substitution of the Phe60 residue by Val, Ser, Leu, His, Tyr and Trp gave proteins with no or only minor conformational changes, as detected by NMR spectroscopy. The affinity of the mutant E. coli SSB proteins for single-stranded DNA decreased in the order Trp greater than Phe (wild-type) greater than Tyr greater than Leu greater than His greater than Val greater than Ser, leading to the conclusion that position 60 is a site of hydrophobic interaction of the protein with DNA.  相似文献   

5.
The intact kringle 4 domain of chicken plasminogen has been characterized by 1H NMR spectroscopy at 300 and 620 MHz in both the presence and absence of epsilon-aminocaproic acid, an antifibrinolytic drug. The study focuses on the aromatic resonances. Comparisons with spectra from human, porcine and bovine kringle 4 homologs indicates a strict conservancy of conformation, reflecting the underlying primary sequence homology, and leads to an unambiguous assignment of all the aromatic resonances, including those of Phe15 and His40 which are unique to the chicken domain. Conclusive evidence is found that the Tyr9 ring fluctuates between two states, one in which it flips fast and other in which it is severely hindered. Similarly, the Tyr64 side chain finds itself in a structurally constrained locus. The Trp62, Tyr64, and Trp72 aromatic resonances are most sensitive to ligand presence, supporting a previously reported model of the kringle 4 lysine-binding site. His40, Phe41, and Tyr74 are also perturbed by ligand indicating proximity to the site. In contrast, the Phe15 aromatic spectrum indicates a rather mobile phenyl ring which is insensitive to ligand presence, thus confirming the lesser importance of the corresponding segment within the first kringle loop in determining kringle structure and/or function.  相似文献   

6.
The presence, microenvironment, and proximity of an essential Trp with the essential His and Cys residues in the active site of an alkaline protease have been demonstrated for the first time using chemical modification, chemo-affinity labeling, and fluorescence spectroscopy. Kinetic analysis of the N-bromosuccinimide- (NBS) or p-hydroxymercuribenzoate- (PHMB) modified enzyme from Conidiobolus sp. revealed that a single Trp and Cys are essential for activity in addition to the Asp, His, and Ser residues of the catalytic triad. Full protection by casein against inactivation of the enzyme by NBS and quenching of Trp fluorescence upon binding of the enzyme with NBS, substrate (sAAPF-pNA), or inhibitor (SSI) confirmed participation of the Trp residue at the substrate/inhibitor binding site of the alkaline protease. Comparison of the K(sv) values for the charged quenchers CsCI (1.66) and KI (7.0) suggested that the overall Trp microenvironment in the protease is electropositive. The proximity of Trp with His was demonstrated by the sigmoidal shape of the pH-dependent fluorometric titration curve with a pK(F) of 6.1. The vicinity of Trp with Cys was indicated by resonance energy transfer between the intrinsic fluorophore (Trp) and 5-iodoacetamide-fluorescein labeled Cys (extrinsic fluorophore). Our results on the proximity of Trp with essential His and Cys thus confirm the presence of Trp in the active site of the alkaline protease.  相似文献   

7.
Three Trp variants of lysyl-tRNA synthetase from Bacillus stearothermophilus, in which either one or both of the two Trp residues within the enzyme (Trp314 and Trp332) were substituted by a Phe residue, were produced by site-directed mutagenesis without appreciable loss of catalytic activity. The following two phenomena were observed with W332F and with the wild-type enzyme, but not with W314F: (1) the addition of L-lysine alone decreased the protein fluorescence of the enzyme, but the addition of ATP alone did not; (2) the subsequent addition of ATP after the addition of excess L-lysine restored the fluorescence to its original level. Fluorometry under various conditions and UV-absorption spectroscopy revealed that Trp314, which was about 20A away from the lysine binding site and was shielded in a non-polar environment, was solely responsible for the fluorescence changes of the enzyme in the L-lysine activation reaction. Furthermore, the microenvironmental conditions around the residue were made more polar upon the binding of L-lysine, though its contact with the solvent was still restricted. It was suggested that Trp314 was located in a less polar environment than was Trp332, after comparison of the wavelengths at the peaks of fluorescence emission and of the relative fluorescence quantum yields. Trp332 was thought, based on the fluorescence quenching by some perturbants and the chemical modification with N-bromosuccinimide, to be on the surface of the enzyme, whereas Trp314 was buried inside. The UV absorption difference spectra induced by the L-lysine binding indicated that the state of Trp314, including its electrostatic environment, changed during the process, but Trp332 did not change. The increased fluorescence from Trp314 at acidic pH compared with that at neutral pH suggests that carboxylate(s) are in close proximity to the Trp314 residue.  相似文献   

8.
The crystal structures of protocatechuate 3,4-dioxygenase from the soil bacteria Acinetobacterstrain ADP1 (Ac 3,4-PCD) have been determined in space group I23 at pH 8.5 and 5.75. In addition, the structures of Ac 3,4-PCD complexed with its substrate 3, 4-dihydroxybenzoic acid (PCA), the inhibitor 4-nitrocatechol (4-NC), or cyanide (CN(-)) have been solved using native phases. The overall tertiary and quaternary structures of Ac 3,4-PCD are similar to those of the same enzyme from Pseudomonas putida[Ohlendorf et al. (1994) J. Mol. Biol. 244, 586-608]. At pH 8.5, the catalytic non-heme Fe(3+) is coordinated by two axial ligands, Tyr447(OH) (147beta) and His460(N)(epsilon)(2) (160beta), and three equatorial ligands, Tyr408(OH) (108beta), His462(N)(epsilon)(2) (162beta), and a hydroxide ion (d(Fe-OH) = 1.91 A) in a distorted bipyramidal geometry. At pH 5.75, difference maps suggest a sulfate binds to the Fe(3+) in an equatorial position and the hydroxide is shifted [d(Fe-OH) = 2.3 A] yielding octahedral geometry for the active site Fe(3+). This change in ligation geometry is concomitant with a shift in the optical absorbance spectrum of the enzyme from lambda(max) = 450 nm to lambda(max) = 520 nm. Binding of substrate or 4-NC to the Fe(3+) is bidentate with the axial ligand Tyr447(OH) (147beta) dissociating. The structure of the 4-NC complex supports the view that resonance delocalization of the positive character of the nitrogen prevents substrate activation. The cyanide complex confirms previous work that protocatechuate 3,4-dioxygenases have three coordination sites available for binding by exogenous substrates. A significant conformational change extending away from the active site is seen in all structures when compared to the native enzyme at pH 8.5. This conformational change is discussed in its relevance to enhancing catalysis in protocatechuate 3,4-dioxygenases.  相似文献   

9.
Interaction of anions with the active site of carboxypeptidase A   总被引:1,自引:0,他引:1  
Studies of azide inhibition of peptide hydrolysis catalyzed by cobalt(II) carboxypeptidase A identify two anion binding sites. Azide binding to the first site (KI = 35 mM) inhibits peptide hydrolysis in a partial competitive mode while binding at the second site (KI = 1.5 M) results in competitive inhibition. The cobalt electronic absorption spectrum is insensitive to azide binding at the first site but shows marked changes upon azide binding to the second site. Thus, azide elicits a spectral change with new lambda max (epsilon M) values of 590 (330) and 540 nm (190) and a KD of 1.4 M, equal to the second kinetic KI value for the cobalt enzyme, indicating that anion binding at the weaker site involves an interaction with the active-site metal. Remarkably, in the presence of the C-terminal products of peptide or ester hydrolysis or carboxylate inhibitor analogues, anion (e.g., azide, cyanate, and thiocyanate) binding is strongly synergistic; thus, KD for azide decreases to 4 mM in the presence of L-phenylalanine. These ternary complexes have characteristic absorption, CD, MCD, and EPR spectra. The absorption spectra of azide/carboxylate inhibitor ternary complexes with Co(II)CPD display a near-UV band between 305 and 310 nm with epsilon M values around 900-1250 M-1 cm-1. The lambda max values are close to the those of the charge-transfer band of an aquo Co(II)-azide complex (310 nm), consistent with the presence of a metal azide bond in the enzyme complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A tunable fourth derivative UV absorbance method based on a variable spectral shift has been developed and compared to the Savitzky-Golay method and the analytical derivative. The parameters of the method were optimised for the analysis of the UV absorbance spectra of the aromatic amino acids to quantify the effect of decreasing solvent polarity on their fourth derivative spectra. The wavelength of the highest maximum (max) (for tyrosine and phenylalanine) or the amplitude of the highest maximum (Amax) (for tryptophan), were shown to depend linearly on the dielectric constant of the solvent, ranging from water to cyclohexane. The only effect of pressure in the 1 to 500 MPa range is a small decrease in the fourth derivative amplitude. This method appears therefore as a suitable tool to evaluate changes of the dielectric constant in the vicinity of the aromatic amino acids in proteins which undergo pressure induced structural changes.  相似文献   

11.
Melanocarpus albomyces laccase crystals were soaked with 2,6-dimethoxyphenol, a common laccase substrate. Three complex structures from different soaking times were solved. Crystal structures revealed the binding of the original substrate and adducts formed by enzymatic oxidation of the substrate. The dimeric oxidation products were identified by mass spectrometry. In the crystals, a 2,6-dimethoxy-p-benzoquinone and a C-O dimer were observed, whereas a C-C dimer was the main product identified by mass spectrometry. Crystal structures demonstrated that the substrate and/or its oxidation products were bound in the pocket formed by residues Ala191, Pro192, Glu235, Leu363, Phe371, Trp373, Phe427, Leu429, Trp507 and His508. Substrate and adducts were hydrogen-bonded to His508, one of the ligands of type 1 copper. Therefore, this surface-exposed histidine most likely has a role in electron transfer by laccases. Based on our mutagenesis studies, the carboxylic acid residue Glu235 at the bottom of the binding site pocket is also crucial in the oxidation of phenolics. Glu235 may be responsible for the abstraction of a proton from the OH group of the substrate and His508 may extract an electron. In addition, crystal structures revealed a secondary binding site formed through weak dimerization in M. albomyces laccase molecules. This binding site most likely exists only in crystals, when the Phe427 residues are packed against each other.  相似文献   

12.
Protoglobin from Methanosarcina acetivorans C2A (MaPgb), a strictly anaerobic methanogenic Archaea, is a dimeric haem-protein whose biological role is still unknown. As other globins, protoglobin can bind O2, CO and NO reversibly in vitro, but it displays specific functional and structural properties within members of the hemoglobin superfamily. CO binding to and dissociation from the haem occurs through biphasic kinetics, which arise from binding to (and dissociation from) two distinct tertiary states in a ligation-dependent equilibrium. From the structural viewpoint, protoglobin-specific loops and a N-terminal extension of 20 residues completely bury the haem within the protein matrix. Thus, access of small ligand molecules to the haem is granted by two apolar tunnels, not common to other globins, which reach the haem distal site from locations at the B/G and B/E helix interfaces. Here, the roles played by residues Trp(60)B9, Tyr(61)B10 and Phe(93)E11 in ligand recognition and stabilization are analyzed, through crystallographic investigations on the ferric protein and on selected mutants. Specifically, protein structures are reported for protoglobin complexes with cyanide, with azide (also in the presence of Xenon), and with more bulky ligands, such as imidazole and nicotinamide. Values of the rate constant for cyanide dissociation from ferric MaPgb-cyanide complexes have been correlated to hydrogen bonds provided by Trp(60)B9 and Tyr(61)B10 that stabilize the haem-Fe(III)-bound cyanide. We show that protoglobin can strikingly reshape, in a ligand-dependent way, the haem distal site, where Phe(93)E11 acts as ligand sensor and controls accessibility to the haem through the tunnel system by modifying the conformation of Trp(60)B9.  相似文献   

13.
Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.  相似文献   

14.
Structural aspects of the binding of the linear ligands N alpha-acetyl-L-lysine (AcLys) and epsilon-aminocaproic acid (epsilon ACA) and of the cyclic analogs trans-(aminomethyl)-cyclohexanecarboxylic acid (AMCHA) and p-benzylaminesulfonic acid (BASA) to the intact plasminogen kringle 4 domain have been investigated by 1H-NMR spectroscopy at 300 and 600 MHz. Ligand binding results in consistent shifts of the His-II (His31), Trp-I (Trp25?), Trp-II (Trp62?), Trp-III (Trp72), Tyr-II (Tyr50), and Phe64 ring signals. BASA tends to induce larger shifts than elicited by the aliphatic ligands, most noticeably on Trp-II and on Trp72, suggesting that the ligand aromatic ring interacts with the two indole groups. Trp-II and, to lesser extent, Trp-I interact with an acidic side chain group, in a manner that is blocked by BASA. BASA binding also perturbs Tyr-II (Tyr50), Tyr-III (Tyr41), and Tyr-IV (Tyr74) over a wide pH range and lowers the pKa* of His31 from approximately 4.8 to approximately 4.6. His-III (His33) responds to BASA and AMCHA but is relatively insensitive to the linear ligands. His33 carries a sterically shielded side chain which, in conjunction with Leu46, Trp-I, Tyr50, and Tyr74, participates in structuring the kringle hydrophobic core, contiguous to the binding site. Pronounced shifts are observed for aliphatic resonances stemming from the kringle-bound molecules of AMCHA, AcLys, and epsilon ACA. It is proposed that the lysine-binding site is mostly supported by the loop that extends from Cys51 through Cys71 and that aromatic residues, which include Trp-II, Trp72, and Phe64, play a major role in interacting with the nonpolar segment of the ligand molecule. The binding site also encompasses Tyr50, Tyr74, His31, and His33 although it is not clear the extent to which these residues interact directly with the ligand.  相似文献   

15.
Tyrosinase, which usually catalyzes the conversion of o-diphenols to o-benzoquinones, catalyzed an unusual oxidative dimerization of 1,2-dehydro-N-acetyl-dopamine to a benzodioxan derivative. The identity of the product was confirmed by UV, IR spectra, and NMR studies. During the oxidation, generation of a transient reactive intermediate could be witnessed by its characteristic visible absorption spectrum. Typical phenoloxidase inhibitors such as phenylthiourea, potassium cyanide, sodium azide, and sodium fluoride drastically inhibited the above reaction. Mimosine, a known competitive inhibitor of o-diphenoloxidase activity, also inhibited the new reaction competitively, suggesting that both the observed oxidative dimerization and the conventional quinone production are catalyzed by the same active site copper of tyrosinase. Based on our earlier findings (Sugumaran, M., and Lipke, H. (1983) FEBS Lett. 155, 65-68; Sugumaran, M. (1986) Biochemistry 25, 4489-4492) that phenoloxidases can produce quinone methides from certain 4-alkylcatechols, possible mechanisms for this new reaction are presented.  相似文献   

16.
1.Upon addition of sulphide to oxidized cytochrome c oxidase, a low-spin heme sulphide compound is formed with an EPR signal at gx = 2.54, gy = 2.23 and gz = 1.87. Concomitantly with the formation of this signal the EPR-detectable low-spin heme signal at g = 3 and the copper signal near g = 2 decrease in intensity, pointing to a partial reduction of the enzyme by sulphide. 2. The addition of sulphide to cytochrome c oxidase, previously reduced in the presence of azide or cyanide, brings about a disappearance of the azido-cytochrome c oxidase signal at gx = 2.9, gy = 2.2, and gz = 1.67 and a decrease of the signal at g = 3.6 of cyano-cytochrome c oxidase. Concomitantly the sulphide-induced EPR signal is formed. 3. These observations demonstrate that azide, cyanide and sulphide are competitive for an oxidized binding site on cytochrome c oxidase. Moreover, it is shown that the affinity of cyanide and sulphide for this site is greater than that of azide.  相似文献   

17.
We have developed a simple biologically non-invasive method for determining the critical micellar concentration (CMC) of bile salts using pure naturally occurring bilirubin IX alpha monoglucuronide (BMG), an important bile pigment present in virtually all mammalian biles. This methodology employs visible absorbance spectroscopy of BMG in bile salts over a range of bile salt concentrations that include the reported CMC. Using 100 microM-BMG in 0.4 M-imidazole buffer at pH 7.8, we calculated that the CMC for sodium taurochenodeoxycholate is between 2.5 and 3.0 mM based on: (1) an abrupt change in lambda max. in this concentration range, (2) a precipitous decrease in the amplitude of the absorbance shoulder at 450 nm, (3) a sudden decrease in the second derivative absorbance of BMG at 400 nm and an increase in absorbance at 470 nm, (4) a sharp change in the 4th derivative absorbance at 375 and 395 nm. In contrast, sodium taurocholate, a bile salt that reportedly does not have a CMC but continuously self-associates over a wide concentration range, exhibited none of these changes. The use of derivative spectroscopy enhances the ability to detect the CMC changes and also indicates the number of BMG species in solution and their relative energy states.  相似文献   

18.
We report in this paper the presence of fluorescence bands of tryptophan and tyrosine solutions centered above 550 nm. This long-wavelength fluorescence is of much lower intensity, (0.4-2.7)%, than the UV fluorescence of these aromatic aminoacids. The basic characteristic of these fluorescence bands are: (a) tyrosine: lambda em = 600 nm with two excitation peaks centered at 453 nm and 550 nm (b) tryptophan: lambda em = 675 nm with two excitation peaks centered at 455 and 560 nm. It has been found that irradiation of tyrosine solutions with a potent UV lamp promotes an important increase of absorption at 310 nm and above 400 nm.  相似文献   

19.
有机溶剂微扰葡萄糖淀粉酶时的紫外、荧光和红外光谱   总被引:6,自引:0,他引:6  
本文结果表明:(1)酶体系中随有机溶剂含量增加,紫外吸收亦随之增加,表明芳香氨基酸更充分地暴露,分子更趋于伸展;(2)酶的荧光发射随有机溶剂量增加而稍有变化,但当溶剂量达到一定值时[对乙二醇为35%(V/V)],荧光发射强度显著增加,表明酶分子构象受溶剂影响有一个极限值;(3)酶的傅立叶红外光谱表明,有机溶剂侧链的疏水性愈强,微扰后C=O,C—N,O—H等共价键的吸收峰变得愈宽,愈强,肽链愈伸展。  相似文献   

20.
We have used low-temperature (77 K) resonance Raman (RR) spectroscopy as a probe of the electronic and molecular structure to investigate weak π-π interactions between the metal ion-coordinated His imidazoles and aromatic side chains in the second coordination sphere of blue copper proteins. For this purpose, the RR spectra of Met16 mutants of Achromobacter cycloclastes pseudoazurin (AcPAz) with aromatic (Met16Tyr, Met16Trp, and Met16Phe) and aliphatic (Met16Ala, Met16Val, Met16Leu, and Met16Ile) amino acid side chains have been obtained and analyzed over the 100-500 cm−1 spectral region. Subtle strengthening of the Cu(II)-S(Cys) interaction on replacing Met16 with Tyr, Trp, and Phe is indicated by the upshifted (0.3-0.8 cm−1) RR bands involving ν(Cu-S)Cys stretching modes. In contrast, the RR spectra of Met16 mutants with aliphatic amino acids revealed larger (0.2-1.8 cm−1) shifts of the ν(Cu-S)Cys stretching modes to a lower frequency region, which indicate a weakening of the Cu(II)-S(Cys) bond. Comparisons of the predominantly ν(Cu-S)Cys stretching RR peaks of the Met16X = Tyr, Trp, and Phe variants, with the molar absorptivity ratio ε1/ε2 of σ(∼455 nm)/π(∼595 nm) (Cys)S → Cu(II) charge-transfer bands in the optical spectrum and the axial/rhombic EPR signals, revealed a slightly more trigonal disposition of ligands about the copper(II) ion. In contrast, the RR spectra of Met16Z = Ala, Val, Leu, and Ile variants with aliphatic amino acid side chains show a more tetrahedral perturbation of the copper active site, as judged by the lower frequencies of the ν(Cu-S)Cys stretching modes, much larger values of the ε1/ε2 ratio, and the increased rhombicity of the EPR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号