首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Most Finnish streams were channelised during the 19th and 20th century to facilitate timber floating. By the late 1970s, extensive programmes were initiated to restore these degraded streams. The responses of fish populations to restoration have been little studied, however, and monitoring of other stream biota has been negligible. In this paper, we review results from a set of studies on the effects of stream restoration on habitat structure, brown trout populations, benthic macroinvertebrates and leaf retention. 2. In general, restoration greatly increased stream bed heterogeneity. The cover of mosses in channelised streams was close to that of unmodified reference sites, but after restoration moss cover declined to one‐tenth of the pre‐restoration value. 3. In one stream, densities of age‐0 trout were slightly lower after restoration, but the difference to an unmodified reference stream was non‐significant, indicating no effect of restoration. In another stream, trout density increased after restoration, indicating a weakly positive response. The overall weak response of trout to habitat manipulations probably relates to the fact that restoration did not increase the amount of pools, a key winter habitat for salmonids. 4. Benthic invertebrate community composition was more variable in streams restored 4–6 years before sampling than in unmodified reference streams or streams restored 8 years before sampling. Channelised streams supported a distinctive set of indicator species, most of which were filter‐feeders or scrapers, while most of the indicators in streams restored 8 years before sampling were shredders. 5. Leaf retentiveness in reference streams was high, with 60–70% of experimentally released leaves being retained within 50 m. Channelised streams were poorly retentive (c. 10% of leaves retained), and the increase in retention following restoration was modest (+14% on average). Aquatic mosses were a key retentive feature in both channelised and natural streams, but their cover was drastically reduced through restoration. 6. Mitigation of the detrimental impacts of forestry (e.g. removal of mature riparian forests) is a major challenge to the management of boreal streams. This goal cannot be achieved by focusing efforts only on restoration of physical structures in stream channels, but also requires conservation and ecologically sound management of riparian forests.  相似文献   

2.
Despite some highly visible projects that have resulted in environmental benefits, recent efforts to quantify the number and distribution of river restoration projects revealed a paucity of written records documenting restoration outcomes. Improving restoration designs and setting watershed priorities rely on collecting and making accessible this critical information. Information within the unpublished notes of restoration project managers is useful but rarely documents ecological improvements. This special section of Restoration Ecology is devoted to the current state of knowledge on river restoration. We provide an overview of the section’s articles, reflecting on lessons learned, which have implications for the implementation, legal, and financing frameworks for restoration. Our reflections are informed by two databases developed under the auspices of the National River Restoration Science Synthesis project and by extensive interactions with those who fund, implement, and permit restoration. Requiring measurable ecological success criteria, comprehensive watershed plans, and tracking of when and where restoration projects are implemented are critical to improving the health of U.S. waters. Documenting that a project was put in the ground and stayed intact cannot be equated with ecological improvements. However, because significant ecological improvements can come with well‐designed and ‐implemented stream and river restorations, a small investment in documenting the factors contributing to success will lead to very large returns in the health of our nation’s waterways. Even projects that may appear to be failures initially can be turned into success stories by applying the knowledge gained from monitoring the project in an adaptive restoration approach.  相似文献   

3.
It is now accepted that most of the rivers and streams of Australia have been degraded to varying extents by European settlement. The scale and level of this degradation have been documented by State and Federal government authorities. To halt and reverse the degradation in the next two decades, it is crucial that the conservation and restoration of streams, rivers, riparian zones, and catchments become paramount in land and water management. Effective stream restoration requires a coordinated effort at the catchment level rather than at the level of many individual local sites. Monitoring, including the gathering of before-restoration data, and the setting of feasibly-attainable goals are key components of effective restoration. In planning projects and setting goals, it needs to be recognized that some goals may only be attained in the long-term. Large-scale restoration projects will require partnerships to be formed between resource managers and scientists, with other stakeholders possibly involved. Selected projects could be adaptively managed with the emphasis on gaining scientific knowledge on the effects of management interventions.  相似文献   

4.
Riparian Plant Restoration in Summer-Dry Riverbeds of Southeastern Spain   总被引:2,自引:0,他引:2  
An evaluation was made of the development of two experimental plots where restoration of dominant riparian plant species was conducted in December 1991 along two semiarid Mediterranean summer‐dry watercourses. An overall comparison was made of the vegetation structure, species cover, floral composition, and species richness of the plots restored using vegetation from nearby undisturbed plots along the same watercourse. The monitoring was performed in October 1993, October 1995, September 1997, and October 1999. In the restored zones previously rooted cuttings of the species most representative of these communities were planted, using the undisturbed zones as vegetation models. Climatological conditions (particularly the rainfall regime during the planting period) substantially favored the success of the planting establishment. The results show that a simple planting technique accompanied by monitoring during the first year is adequate to achieve success in establishment of planting species. It is necessary to take precautions against herbivory of small plants of Chamaerops humilis, Ficus carica, and Retama sphaerocarpa. The planting itself causes some disturbance in the soil that may alter the species composition, giving an advantage to ruderal species over others. More time is needed to attain coverage, frequency, and species composition comparable with that of undisturbed zones.  相似文献   

5.
6.
1. Tallgrass prairies and their streams are highly endangered ecosystems, and many remaining streams are threatened by the encroachment of woody riparian vegetation. An increase in riparian vegetation converts the naturally open‐canopy prairie streams to closed‐canopy systems. The effects of a change in canopy cover on stream metabolism are unknown. 2. Our goal was to determine the effects of canopy cover on prairie stream metabolism during a 4‐year period in Kings Creek, KS, U.S.A. Metabolic rates from forested reaches were compared to rates in naturally open‐canopy reaches and restoration reaches, the latter having closed canopies in 2006 and 2007 and open canopies in 2008 and 2009. Whole‐stream metabolism was estimated using the two‐station diurnal method. Chlorophyll a concentrations and mass of filamentous algae were measured after riparian removal to assess potential differences in algal biomass between reaches with open or closed canopies. 3. Metabolic rates were spatially and temporally variable even though the sites were on very similar streams or adjacent to each other within streams. Before riparian vegetation removal, whole‐stream community respiration (CR) and net ecosystem production were greater with greater canopy cover. In the vegetation removal reaches, gross primary production was slightly greater after removal. 4. Chlorophyll a concentrations were marginally significantly greater in open (naturally open and removal reaches) than in closed canopy and differed significantly between seasons. Filamentous algal biomass was greater in open than in closed‐canopy reaches. 5. Overall, the restoration allowed recovery of some features of open‐canopy prairie streams. Woody expansion apparently increases CR and moves prairie stream metabolism towards a more net heterotrophic state. An increase in canopy cover decreases benthic chlorophyll, decreases dominance of filamentous algae and potentially alters resources available to the stream food web. The results of this study provide insights for land managers and conservationists interested in preserving prairie streams in their native open‐canopy state.  相似文献   

7.
1. We measured responses in macroinvertebrate secondary production after large wood additions to three forested headwater streams in the Upper Peninsula of Michigan. These streams had fine‐grained sediments and low retention capacity due to low amounts of in‐channel wood from a legacy of past logging. We predicted that wood addition would increase macroinvertebrate secondary production by increasing exposed coarse substrate and retention of organic matter. 2. Large wood (25 logs) was added haphazardly to a 100‐m reach in each stream, and a 100‐m upstream reach served as control; each reach was sampled monthly, 1 year before and 2 years after wood addition (i.e. BACI design). Macroinvertebrate secondary production was measured 1 year after wood addition in two habitat types: inorganic sediments of the main channel and debris accumulations of leaf litter and small wood. 3. Overall macroinvertebrate production did not change significantly because each stream responded differently to wood addition. Production increased by 22% in the main‐channel of one stream, and showed insignificant changes in the other two streams compared to values before wood addition. Changes in main‐channel macroinvertebrate production were related to small changes in substrate composition, which probably affected habitat and periphyton abundance. Macroinvertebrate production was much greater in debris accumulations than in the main‐channel, indicating the potential for increased retention of leaf litter to increase overall macroinvertebrate production, especially in autumn. 4. Surrounding land use, substrate composition, temperature and method of log placement are variables that interact to influence the response of stream biota to wood additions. In most studies, wood additions occur in altered catchments, are rarely monitored, and secondary production is not a common metric. Our results suggest that the time required for measurable changes in geomorphology, organic matter retention, or invertebrate production is likely to take years to achieve, so monitoring should span more than 5 years, and ecosystem metrics, such as macroinvertebrate secondary production, should be incorporated into restoration monitoring programs.  相似文献   

8.
As part of a habitat restoration experiment wood substrates (red gum) were introduced to two lowland streams of SE Australia in which habitat has been severely degraded by deposition of sand eroded from higher in the catchment. We monitored net primary production (NPP) and community respiration (CR), nutrient concentrations and the succession of algae and invertebrates (abundance and species richness), sampling at 2, 4, 8, 12, 16 and 20 weeks. Colonisation by algae was rapid, and there were distinct changes in the assemblages over the first 4 weeks. Thereafter, changes were much less marked. There were also differences in nutrient concentrations and some measures of algal abundance between the two creeks. As with the algae, invertebrates colonised these substrates extremely rapidly, peaking in abundance and richness in week 8. Invertebrate abundances closely tracked changes in the abundance of algae. By the end of the study both algal and invertebrate communities were in apparent decline, with sharp decreases in invertebrate and algal abundance and invertebrate species richness. Rates of GPP also declined toward the end of the experiment, and this coincided with the detachment of large mats of filamentous algae and the recession of flows over the summer months. However, in both streams the added timber quickly created habitat with high levels of primary production in an otherwise strongly heterotrophic stream system. These hotspots of autotrophic production were quickly colonised by high numbers of macroinvertebrates indicating timber addition may provide an effective means of augmenting habitat for algae and invertebrates in sanded streams.  相似文献   

9.
Over the past two decades, watershed restoration has dramatically increased internationally. California has been at the forefront, allocating billions of dollars to restoration activities through legislation and voter-approved bonds. Yet, the implications of restoration remain ambiguous because there has been little examination of restoration accomplishments and almost no analysis of the political context of restoration. This article addresses these gaps, utilizing a case study of the Russian River basin in Northern California. We identify trends that shed light on both the ecological and the political implications of restoration at a basin scale by examining a database of 787 restoration projects implemented in the Russian River basin since the early 1980s. Although a total of over $47 million has been spent on restoration in the basin, dominant forms of restoration are limited in scope to small-scale projects that focus on technical solutions to site-specific problems. The majority of restoration efforts are devoted to road repair, riparian stabilization, and in-stream structures, accounting for 62% of all projects. These types of projects do not address the broader social drivers of watershed change such as land and water uses. We suggest that restoration can become more effective by addressing the entire watershed as a combination of social and ecological forces that interact to produce watershed conditions.  相似文献   

10.
The extent of impairment to some Appalachian watersheds from acid precipitation is so extreme that watershed scale analytical tools are needed to help guide cost‐effective management decisions. The objective of this study was to develop a measure of the functional value of streams as potential areas for juvenile Brook trout recruitment. This measure, which we term “weighted potential recruitment area” (WPRA), is a function of the expected Brook trout spawning intensity and juvenile survivorship. Estimates of WPRA for each stream segment were then used to identify restoration priorities and optimal restoration programs in the upper Shavers Fork watershed in West Virginia, U.S.A. Using this approach, we determined that the watershed has lost nearly 80% of its historic juvenile recruitment potential as a result of acid precipitation. We also determined that of the 145 stream segments in the watershed, eight critical stream segments account for nearly 20% of the loss. The costs and ecological benefits of a series of five alternative restoration programs were then assessed using an ArcGIS model (Environmental Systems Research Institute, Redlands, CA, U.S.A.). This approach identified two “optimal” alternatives: (1) a low‐cost, moderate‐benefit approach that would use existing rail access to treat acidification in three critical headwater locations and (2) a high‐cost, high‐benefit approach that would use aerial limestone application to treat numerous acidic tributaries near their source. The measure of stream ecological value that we developed was effective in identifying critical restoration priorities and optimal restoration strategies in this watershed. A similar procedure could be used to guide watershed restoration decisions throughout the Appalachian region.  相似文献   

11.
The aim of this study was to examine the habitat associations of a native cyprinid community of the recovering Rondegat River in the Cape Fold Ecoregion of South Africa as part of a long-term native fish abundance monitoring project. Relative abundance data were extracted from underwater video camera footage across the longitudinal gradient of the river in three sampling instances. Using multivariate methods the authors assessed community composition with respect to habitat, its overlap with a protected area and species-specific abiotic predictors of relative abundance. Distance from the uppermost site in the river was the most significant predictor of species abundance, indicating spatial segregation and varying overlap between species. The protected status of sites in the upper reaches, vegetated substrates and the size of individual sites were the most impactful on the relative abundance of the endangered fiery redfin Pseudobarbus phlegethon. The results of this study indicate that underwater video monitoring is an effective and low-cost approach that can inform conservation recommendations. Reducing agricultural runoff and sedimentation in the lower reaches may be useful further interventions to maintain key habitats of submerged vegetation.  相似文献   

12.
Restoring Stream Ecosystems: Lessons from a Midwestern State   总被引:3,自引:0,他引:3  
Reach‐scale stream restorations are becoming a common approach to repair degraded streams, but the effectiveness of these projects is rarely evaluated or reported. We surveyed governmental, private, and nonprofit organizations in the state of Indiana to determine the frequency and nature of reach‐scale stream restorations in this midwestern U.S. state. For 10 attempted restorations in Indiana, questionnaires and on‐site assessments were used to better evaluate current designs for restoring stream ecosystems. At each restoration site, habitat and water quality were evaluated in restored and unrestored reaches. Our surveys identified commonalities across all restorations, including the type of restoration, project goals, structures installed, and level of monitoring conducted. In general, most restorations were described as stream‐relocation projects that combined riparian and in‐stream enhancements. Fewer than half of the restorations conducted pre‐ or post‐restoration monitoring, and most monitoring involved evaluations of riparian vegetation rather than aquatic variables. On‐site assessments revealed that restored reaches had significantly lower stream widths and greater depths than did upstream unrestored reaches, but riparian canopy cover often was lower in restored than in unrestored reaches. This study provides basic information on midwestern restoration strategies, which is needed to identify strengths and weaknesses in current practices and to better inform future stream restorations.  相似文献   

13.
14.
The relative effect of individual elements of restoration projects on stream–subsurface water exchange was studied by identifying elements that were most effective in increasing downwelling stream water (DSW) into subsurface environments using groundwater flow modeling. Several restoration projects studied in lowland streams involved riffle-pool construction, lateral gravel bar construction and channel re-meandering. Simulations using a homogeneous field of mean hydraulic conductivity that removed heterogeneity showed a large decline in DSW in the four restoration projects studied, suggesting that use of coarse sediments in construction initially increases stream–subsurface water exchange, but the effects may not persist in streams where fine sediments clog streambeds. In two riffle-pool construction projects studied, modification of the channel gradient showed a greater effect on DSW than the alteration of substrate texture. In the gravel bar construction site, modeling results indicated that the construction of a riffle-pool sequence along the bar had a greater effect than the construction of the gravel bar itself. In contrast in the channel re-meandering site, the combination of a greater sinuosity and a lower hydraulic head along the small riffles resulted in re-meandering having a greater effect than the associated riffle-pool construction. A simulation in which the floodplain sediments of low saturated hydraulic conductivity at the re-meandered site were replaced with sandy gravels increased DSW by 10 times. This modeling suggests that the addition of coarse sediments in combination with re-meandering would be required to significantly enhance stream–subsurface water exchange in reaches with fine-grained floodplain sediments. Designing the size and type of morphologic features constructed in restoration projects is somewhat flexible, and the use of modeling to simulate stream–groundwater interactions may help to enhance the hydrologic link with a stream and the subsurface environment in restored stream reaches.  相似文献   

15.
16.
Defensive reactions of rhithron and epipotamon against low and early organic pollution are described. Hitherto two reactions could be found in streams: transformation of the epilithic energy flow to intensify microbial decomposition, and the mass production of Cladophora for elimination of biomass, nutrients, heavy metals and other noxious agents. The Cladophora production reaction leads to a centralization of the ecosystem, but functions incompletely. This can be compensated by an ecosystem-adequate restoration method. Similarly the “whiting” (i.e. biogenic decalcification) during in pelagials Cladophora mass production happens at the expense of the benthic communities and may be called “dysoecism”.  相似文献   

17.
18.
The community structure of two confluent streams in southern Sweden was investigated, one stream was spring-fed and the other lake-fed. There was a downstream decrease in the number of species present in the lake outlet stream, no such change being discernible in the spring-fed stream. Taking the sampling site nearest the source of the spring-fed stream as the reference point, there was a downstream increase in dissimilarity and this increase was maintained upstream from the confluence in the lake-fed stream. Apart from generalists, all functional feeding groups showed decreased numbers from the lake outlet to the confluence in the lake-fed stream. In the spring-fed stream, densities of functional groups increased downstream, with the exception of grazers and generalists. There were indications of more predictable changes along the lake-fed stream compared to the spring-fed one, which seemed more influenced by site-specific factors.  相似文献   

19.
  • 1 It is axiomatic that unusually long dry periods (droughts) adversely affect aquatic biota. Recovery after drought is rapid by macroinvertebrates that possess strategies to survive drying or are highly mobile but other taxa take longer to recolonise depending on the timing, intensity, and duration of the dry phase.
  • 2 Although drought acts as a sustained ‘ramp’ disturbance, impacts may be disproportionately severe when certain critical thresholds are exceeded. For example, ecological changes may be gradual while a riffle dries but cessation of flow causes abrupt loss of a specific habitat, alteration of physicochemical conditions in pools downstream, and fragmentation of the river ecosystem. Many ecological responses to drought within these habitats apparently depend on the timing and rapidity of hydrological transitions across these thresholds, exhibiting a ‘stepped’ response alternating between gradual change while a threshold is approached followed by a swift transition when a habitat disappears or is fragmented.
  • 3 In two Australian intermittent streams, drought conditions eliminated or decimated several groups of macroinvertebrates, including atyid shrimps, stoneflies and free‐living caddisflies. These taxa persisted during the early stages of the drought but did not recruit successfully the following year, despite a return to higher‐than‐baseflow conditions. This ‘lag effect’ in response to drought emphasises the value of long‐term survey data. Although changes in faunal composition were inconsistent among sites, marked shifts in taxa richness, abundance and trophic organisation after the riffle habitat dried provide evidence for a stepped response.
  • 4 Responses by macroinvertebrate assemblages to droughts of differing severity in English chalk streams were variable. The prolonged 1988–92 drought had a greater impact than shorter droughts in the early 1970s but recovery over the next 3 years was swift. Effects of the 1995 summer drought were buffered by sustained groundwater discharge from the previous winter. These droughts tended to reduce available riverine habitats, especially via siltation, but few taxa were eliminated because they could recolonise from perennial sections of the chalk streams.
  • 5 In the contrasting environments of the intermittent streams studied in England and Australia, there are parallels in the rapid rates of recolonisation. However, recruitment by taxa that lack desiccation‐resistant stages or have limited mobility is delayed. Currently, long‐term data on these systems may be insufficient to indicate persistent effects of droughts or predict the impacts of excessive surface or groundwater abstraction or the increased frequency and duration of droughts expected with global climate change.
  相似文献   

20.
1. In semi‐arid climates, seasonally‐flowing streams provide most of the water required for human use, but knowledge of how water extraction affects ecological processes is limited. Predicted alterations in stream flows associated with the impacts of climate change further emphasize the need to understand these processes. Benthic algae are an important base for stream food webs, but we have little knowledge of how algae survive dry periods or respond to altered flow regimes. 2. We sampled 19 streams within the Grampians National Park, south‐eastern Australia and included four components: a survey of different drought refuges (e.g. permanent pools, dry biofilm on stones and dry leaf packs) and associated algal taxa; a survey of algal regrowth on stones after flows recommenced to determine which refuges contributed to regrowth; reciprocal transplant experiments to determine the relative importance of algal drift and regrowth from dry biofilm in recolonization; direct measurement of algal drift to determine taxonomic composition in relation to benthic assemblage composition. 3. Algae showed little specificity for drought refuges but did depend on them; no species were found that were not present in at least one of the perennial pool, dry biofilm or leaf pack refuges. Perennial pools were most closely correlated with the composition of algal assemblages once flows resumed, but the loss or gain of perennial pools that might arise from stream regulation is unlikely to affect the composition of algal regrowth. However, regulated streams were associated with strong increases in algal density in dry biofilm, including increased densities of Cyanobacteria. 4. A model for algal recolonization in seasonally‐flowing streams identified three pathways for algal recolonization (drift‐dependent, dry biofilm‐dependent and contributions from both), depending on whether streams are diatom‐dominated or dominated by filamentous algae. The model predicted the effects of changes to stream flow regimes on benthic algal recolonization and provides a basis for hypotheses testable in streams elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号