首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A cytogenetic monitoring study was carried out on a group of workers in clinical analysis laboratories to investigate the risk of occupational exposure to chronic low levels of chemicals.Thirty-four clinical laboratories have been involved in the study. In these laboratories, toxicants and analytical procedures utilized have been characterized. The individual occupational exposure of workers was assessed by use of a questionnaire concerning the chemical substances utilized. About 300 different chemicals have been identified.Cytogenetic analyses (chromosomal aberration and micronucleus tests) were carried out on a strictly selected group of 50 workers enrolled from these laboratories and compared to 53 controls (healthy blood donors) matched for gender and age.The exposed group shows a significantly higher frequency of genetic damage than the control group. Both chromatid and chromosome aberration frequencies in workers appear significantly higher than in controls. Similarly, comparison between micronucleated cells rates of exposed and unexposed groups show significantly higher frequencies of binucleated cells with micronucleus (BNMN) and of total micronuclei (MN tot) in workers than in controls.  相似文献   

2.
The genotoxic risk of underground coal miners from Turkey   总被引:4,自引:0,他引:4  
A cytogenetic monitoring study was carried out on a group of workers from a bituminous coal mine in Zonguldak province of Turkey, to investigate the genotoxic risk of occupational exposure to coal mine dust. Cytogenetic analysis, namely sister chromatid exchanges (SCEs), chromosomal aberrations (CAs) and micronucleus (MN) tests were performed on a strictly selected group of 39 workers and compared to 34 controls matched for gender, age, and habit. Smoking and age were considered as modulating factors. Both SCE and CA frequencies in coal miners appeared significantly higher than in controls. Similarly, there was a significant increase in the frequency of total micronuclei in exposed group as compared to control group. The effect of smoking on the level of SCE and MN was significant in the control group. A positive correlation between the age and the level of SCE was also found in controls. The frequencies of both SCE and CA were significantly enhanced with the years of exposure. The results of this study demonstrated that occupational exposure to coal mine dust leads to a significant induction of cytogenetic damage in peripheral lymphocytes of workers engaged in underground coal mining.  相似文献   

3.
A cytogenetic monitoring study was carried out on a group of workers from a bituminous coal mine in Zonguldak province of Turkey, to investigate the genotoxic risk of occupational exposure to coal mine dust. Cytogenetic analysis, namely sister chromatid exchanges (SCEs), chromosomal aberrations (CAs) and micronucleus (MN) tests were performed on a strictly selected group of 39 workers and compared to 34 controls matched for gender, age, and habit. Smoking and age were considered as modulating factors. Both SCE and CA frequencies in coal miners appeared significantly higher than in controls. Similarly, there was a significant increase in the frequency of total micronuclei in exposed group as compared to control group. The effect of smoking on the level of SCE and MN was significant in the control group. A positive correlation between the age and the level of SCE was also found in controls. The frequencies of both SCE and CA were significantly enhanced with the years of exposure. The results of this study demonstrated that occupational exposure to coal mine dust leads to a significant induction of cytogenetic damage in peripheral lymphocytes of workers engaged in underground coal mining.  相似文献   

4.
A follow-up study was carried out 4 years after an initial evaluation of the micronucleus frequency in 10 healthy individuals who had been occupationally exposed to antineoplastic drugs in a Brazilian hospital. Upon the first evaluation, these 10 exposed individuals were compared with 10 non-exposed individuals matched for age, sex and smoking habits; the results revealed that the frequency of micronucleated lymphocytes in individuals exposed to antineoplastic drugs was significantly higher (P=0.038) than in controls. The frequency of dicentric bridges was also increased, although not significantly (P=0.0545). After the first analysis, the workers handling antineoplastic drugs were advised to modify their work schedule to limit exposure, and the number of workers in the group was increased from 10 to 12 individuals. In the follow-up study, 12 individuals from the same work area were assessed. In addition to micronucleus frequency, alkaline single cell gel electrophoresis was also used to monitor genetic hazard. This exposed group was compared to 12 non-exposed workers from the same hospital, matched for age, sex and smoking habits. In the follow-up study, no statistical difference was found between exposed workers and controls in terms of micronucleus and dicentric bridge frequency with the Mann--Whitney U-test (P=0.129 and 0.373, respectively). However, the mean value of SCGE analysis was significantly higher in the exposed group than in the controls (P=0.0006). Although the micronucleus analysis seems to be less sensitive to assess DNA damage, it detects chromosome aberrations and not just repairable DNA breakage and alkali-labile sites. Combination of the alkaline single cell gel electrophoresis and cytokinesis blocked micronucleus assay appears to be commendable to monitor populations chronically exposed to genotoxic agents.  相似文献   

5.
Chromosome analyses were carried out in peripheral lymphocytes of 27 workers exposed to toluene in a rotogravure plant. At the time of blood sampling all of them had not been exposed to toluene for at least 4 months up to 5 years. Up to 2 years after cessation of exposure to toluene a higher incidence of chromatid-type aberrations could be observed than in controls. After longer post-exposure periods the aberration yields can no longer be distinguished from background level. No differences were revealed in SCE frequencies of smoking or non-smoking workers post toluene exposure compared with the corresponding controls.  相似文献   

6.
Pesticides are widely used throughout the world in agriculture to protect crops and in public health to control diseases. Nevertheless exposure to pesticides can represent a potential risk to humans. Pesticide manufacturing unit workers are prone to possible occupational pesticide exposure. Therefore, this study was performed to evaluate the genotoxic effect of pesticide exposure in these workers. In the present investigation 54 pesticide workers and an equal number of control subjects were assessed for genome damage in blood lymphocytes utilizing the chromosomal aberration analysis and the buccal epithelial cell by adopting the micronucleus test. The results suggested that pesticide workers had a significantly increased frequency of chromosomal aberrations when compared with controls (mean+/-S.D., 8.43+/-2.36 versus 3.32+/-1.26; P<0.05). Similarly, the pesticides exposed workers showed a significant increase in micronucleated cells compared with controls (1.24+/-0.72 versus 0.32+/-0.26; P<0.05). Analysis of variance revealed that occupational exposure to pesticides had a significant effect on frequency of micronuclei (P<0.05), whereas smoking, age, gender and alcohol consumption had no significant effect on genetic damage (P>0.05). However, no association was found between years of exposure, smoking, age, gender, alcohol consumption and higher levels of genetic damage as assessed by the chromosomal aberration assay (P>0.05). Our findings indicate that occupational exposure to pesticides could cause genome damage in somatic cells.  相似文献   

7.
People employed in the shoe manufacture and repair industry are at an increased risk for cancer, the strongest evidence being for nasal cancer and leukaemia. A possible causal role for formaldehyde is likely for cancer of the buccal cavity and nasopharynx. Exfoliated buccal cells are good source of tissue for monitoring human exposure to inhaled and ingested occupational and environmental genotoxicants. To assess the cytogenetic damage related to occupational exposure to airborne chemicals during shoe-making and the processes in pathology and anatomy laboratories, the micronuclei (MN) count per 3000 cells was measured in buccal smears from shoe-workers (group I, n = 22) exposed to mainly n-hexane, toluene and methyl ethyl ketone (MEK) and from anatomy and pathology staff (group II, n = 28) exposed to formaldehyde (FA). Eighteen male university staff were used as controls. The mean time-weighted average (TWA) concentrations of n-hexane, toluene and MEK in 10 small shoe workshops were 58.07 p.p.m., 26.62 p.p.m. and 11.39 p.p.m., respectively. The measured air concentrations of FA in the breathing zone of the anatomy and pathology laboratory workers were between 2 and 4 p.p.m. Levels of 2,5-hexadione (2,5-HD) and hippuric acid (HA), metabolic markers of n-hexane and toluene exposure, respectively, were significantly higher in the urine of workers in group I than in control subjects (p < 0.001 and p < 0.01, respectively). The mean (+/- SD) MN (0/00) [corrected] frequencies in buccal mucosa cells from workers in group I, group II and controls were 0.62 +/- 0.45%, 0.71 +/- 0.56% and 0.33 +/- 0.30%, respectively (p < 0.05 and p < 0.05 compared with controls for group I and group II, respectively). The effects of smoking, age and duration of exposure on the frequency of micronucleated buccal cells from workers in all three groups studied were also evaluated. Overall, the results suggest that occupational exposure to organic solvents, mainly n-hexane, toluene, MEK and FA, may cause cytogenetic damage in buccal cells and that use of exfoliated buccal cells seems to be appropriate to measure exposure to organic solvents.  相似文献   

8.
An integrated population monitoring study was initiated to investigate whether occupational exposure to current low levels of butadiene is mutagenic to workers. Ten exposed workers (mean production area concentration of 3.5 ppm) and 10 matched plant controls(mean exposure to 0.03 ppm) were selected and blood samples were collected for our study. The standard cytogenetic assay was used to determine chromosome aberration frequencies. In addition, a challenge assay was used to determine response to γ-rays as an indication of DNA repair deficiencies. In the latter assay, cells were exposed to γ-rays at the G1 phase of the cell cycle in vitro and the frequencies of chromosome aberrations in the first post-irradiation metaphase cells were quantitated. Based on results of the cytogenetic assay, the exposed group had a higher frequency of cells with chromosome aberrations and higher chromatid breaks per 100 cells compared with the control. However, the difference was not significant (p > 0.1). With the challenge assay, the exposed group had a higher frequency of aberrant cells (p < 0.04), chromatid breaks (p < 0.05), deletions (p < 0.07), and dicentrics (p < 0.02) than the controls. In addition, the dicentric frequencies from workers were significantly correlated with the presence of a butadiene metabolite [1,2-dihydroxy-4-(N-acetyl-cysteinyl-S)butane] in urine with a correlation of coefficient of 0.6 (p < 0.01). Two outliers were identified and our interpretation of their responses will be discussed. This study indicates that the workers had exposure-induced mutagenic effects. Together with the observation of gene mutation in a subset of the present population, this study indicates that the current occupational exposure to butadiene may not be safe to workers.  相似文献   

9.
Past studies have shown that formaldehyde is mutagenic in microbial tests and Drosophila and causes chromosomal aberrations in cultured mammalian cells. Chromosomal analysis of bone marrow cells and spermatocytes from exposed laboratory animals has failed to show any genotoxic effect. Information on individuals occupationally exposed is limited and there is no evidence to date that formaldehyde can induce chromosome damage at occupational levels of exposure. This study examines the chromosome aberration and sister-chromatid exchange frequencies in lymphocytes from a group of 6 pathology workers and 5 unexposed controls. No detectable differences could be found between the groups in either chromosomal aberration induction or sister-chromatid exchange frequencies.  相似文献   

10.
A study was conducted to evaluate the genotoxic effect of occupational exposure to formaldehyde on pathology and anatomy laboratory workers. The level of exposure to formaldehyde was determined by use of passive air-monitoring badges clipped near the breathing zone of 59 workers for a total sampling time of 15min or 8h. To estimate DNA damage, a chemiluminescence microplate assay was performed on 57 workers before and after a 1-day exposure. Assessment of chromosomal damage was carried out by use of the cytokinesis-blocked micronucleus assay (CBMN) in peripheral lymphocytes of 59 exposed subjects in comparison with 37 controls matched for gender, age, and smoking habits. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 18 exposed subjects and 18 control subjects randomized from the initial populations. Mean concentrations of formaldehyde were 2.0 (range <0.1-20.4ppm) and 0.1ppm (range <0.1-0.7ppm) for the sampling times of 15min and 8h, respectively. No increase in DNA damage was detected in lymphocytes after a one-workday exposure. However, the frequency of binucleated micronucleated cells was significantly higher in pathologists/anatomists than in controls (16.9 per thousand+/-9.3 versus 11.1 per thousand+/-6.0, P=0.001). The frequency of centromeric micronuclei was higher in exposed subjects than in controls (17.3 per thousand+/-11.5 versus 10.3 per thousand+/-7.1) but the difference was not significant. The frequency of monocentromeric micronuclei was significantly higher in exposed subjects than in controls (11.0 per thousand+/-6.2 versus 3.1 per thousand+/-2.4, P<0.001), while that of the acentromeric micronuclei was similar in exposed subjects and controls (3.7 per thousand+/-4.2 and 4.1 per thousand+/-2.7, respectively). The enhanced chromosomal damage (particularly chromosome loss) in peripheral lymphocytes of pathologists/anatomists emphasizes the need to develop safety programs.  相似文献   

11.
Several substances used in rubber processing are known to be genotoxic. Workers in a rubber tyre factory, exposed to a broad spectrum of contaminants such as benzo[a]pyrene, benzo-fluoranthene, naphthalene, acetonaphthene, alkenes and 1,3-butadiene have been regularly examined for several years: chromosomal aberrations in lymphocytes, mutagenicity of urine (by use of the Ames test) and various parameters of blood and urine were assessed. An elevated level of mercapturic acid derivatives was found in the urine of employees, which is indicative of environmental exposure to toxicants with alkylating activity. We have now extended this study by examining genotoxicity with the modified Comet assay in parallel with chromosomal aberrations and micronucleus formation as well as immunological endpoints. Twenty-nine exposed workers from this factory were compared with 22 non-exposed administrative staff working in the same factory, as well as with 22 laboratory workers. The absolute numbers of peripheral leukocytes were significantly higher in the exposed group than in either of the control groups (p < 0.001). The erythrocyte mean cell volume was significantly higher in exposed workers in comparison with laboratory controls (p < 0.05). Percentages of lymphocytes, polymorphonuclear leukocytes, monocytes and eosinophils were not altered. The proliferative response of T- and B-cells to mitogen treatment when calculated per number of lymphocytes and adjusted for smoking, age and years of exposure did not differ between exposed and control groups. Endogenous strand breaks (including alkali-labile sites) and altered bases (formamidopyrimidine glycosylase- and endonuclease III-sensitive sites) were measured by the Comet assay in lymphocyte DNA. Exposed workers had significantly elevated levels of DNA breaks compared with office workers (p < 0.00001) or with laboratory controls (p < 0.00001). Micronuclei occurred at significantly higher frequencies in the exposed group than in controls (p < 0.00001), though the frequencies were all within the normal range. Significant correlations were seen between individual values of strand breaks, micronuclei and chromatid/chromosome breaks and certain immunological parameters.  相似文献   

12.
Currently the most applied technique for monitoring biological effects of exposure to genotoxic chemicals in industrial workers is the measurement of chromosome aberrations in peripheral blood lymphocytes. In the Shell petrochemical complex in The Netherlands cytogenetic monitoring studies have been carried out from 1976 till 1981 inclusive, in workers potentially exposed to a variety of genotoxic chemicals, i.e. vinyl chloride, ethylene oxide, benzene, epichlorohydrin, epoxy resins. Average exposure levels to these chemicals were well below the occupational exposure limits. Results of these studies indicate that no biologically significant increase in the frequencies of chromosome aberrations in the exposed populations occurred compared with control populations. Our experience with this methodology has shown that the results of chromosome analyses are difficult to interpret, due to the variable and high background levels of chromosome aberrations in control populations and in individuals. It is concluded that the method is not sufficiently sensitive for routine monitoring of cytogenetic effects in workers exposed to the low levels of genotoxic compounds.  相似文献   

13.
Chromosomal aberration analyses were performed in two groups of radiation workers and in a group of healthy controls. Although the level of exposure was below the accepted annual limit of 50 mSv, the yields of chromosome fragments and of total aberrations were significantly higher in the radiation workers than in the controls. However, the frequencies of dicentric and ring chromosomes in the radiation workers were not significantly different from those in the controls.  相似文献   

14.
Chromosome aberrations frequency was estimated in peripheral lymphocytes from hospital workers occupationally exposed to low levels of ionizing radiation and controls. Chromosome aberrations yield was analyzed by considering the effects of dose equivalent of ionizing radiation over time, and of confounding factors, such as age, gender and smoking status. Frequencies of aberrant cells and chromosome breaks were higher in exposed workers than in controls (P = 0.007, and P = 0.001, respectively). Seven dicentric aberrations were detected in the exposed group and only three in controls, but the mean frequencies were not significantly different. The dose equivalent to whole body of ionizing radiation (Hwb) did appear to influence the spectrum of chromosomal aberrations when the exposed workers were subdivided by a cut off at 50 mSv. The frequencies of chromosome breaks in both subgroups of workers were significantly higher than in controls (< or =50 mSv, P = 0.041; >50 mSv, P = 0.018). On the other hand, the frequency of chromatid breaks observed in workers with Hwb >50 mSv was significantly higher than in controls (P = 0.015) or workers with Hwb < or =50 mSv (P = 0.046). Regarding the influence of confounding factors on genetic damage, smoking status and female gender seem to influence the increase in chromosome aberration frequencies in the study population. Overall, these results suggested that chromosome breaks might provide a good marker for assessing genetic damage in populations exposed to low levels of ionizing radiation.  相似文献   

15.
A cytogenetic study was performed on workers of a leather tanning industry. Two different approaches for the biological monitoring of the individuals were used: chromosomal aberration analysis in peripheral lymphocytes and the frequency of micronucleated cells exfoliated in urine samples. 26 men working in the sections considered to present a greater risk were included in the study. Controls were 20 men that were not exposed to chemicals. The percentage of abnormal cells was higher in workers than in controls. Smokers showed higher values of chromosome breaks than non-smokers in both groups. These differences were not statistically significant. The percentage of cells with chromatid and chromosome gaps in workers and controls was different (p less than 0.01). A slight but not significant increase in the mean percentage of micronuclei was observed in the exposed group. We conclude that exposure to chemicals during leather tanning did not produce genotoxic effects measured by chromosomal aberrations in peripheral lymphocytes and micronuclei in urine in this group of workers.  相似文献   

16.
Chromosomal aberration analyses were performed in two groups of radiation workers and in a group of healthy controls. Although the level of exposure was below the accepted annual limit of 50 mSv, the yields of chromosome fragments and of total aberrations were significantly higher in the radiation workers than in the controls. However, the frequencies of dicentric and ring chromosomes in the radiation workers were not significantly different from those in the control  相似文献   

17.
A replicate evaluation of increased micronucleus (MN) frequencies in peripheral lymphocytes of workers occupationally exposed to formaldehyde (FA) was undertaken to verify the observed effect and to determine scoring variability. May-Grünwald-Giemsa-stained slides were obtained from a previously performed cytokinesis-block micronucleus test (CBMNT) with 56 workers in anatomy and pathology laboratories and 85 controls. The first evaluation by one scorer (scorer 1) had led to a highly significant difference between workers and controls (3.96 vs 0.81 MN per 1000 cells). The slides were coded before re-evaluation and the code was broken after the complete re-evaluation of the study. A total of 1000 binucleated cells (BNC) were analysed per subject and the frequency of MN (in ‰) was determined. Slides were distributed equally and randomly between two scorers, so that the scorers had no knowledge of the exposure status. Scorer 2 (32 exposed, 36 controls) measured increased MN frequencies in exposed workers (9.88 vs 6.81). Statistical analysis with the two-sample Wilcoxon test indicated that this difference was not significant (p=0.17). Scorer 3 (20 exposed, 46 controls) obtained a similar result, but slightly higher values for the comparison of exposed and controls (19.0 vs 12.89; p=0.089). Combining the results of the two scorers (13.38 vs 10.22), a significant difference between exposed and controls (p=0.028) was obtained when the stratified Wilcoxon test with the scorers as strata was applied. Interestingly, the re-evaluation of the slides led to clearly higher MN frequencies for exposed and controls compared with the first evaluation. Bland-Altman plots indicated that the agreement between the measurements of the different scorers was very poor, as shown by mean differences of 5.9 between scorer 1 and scorer 2 and 13.0 between scorer 1 and scorer 3. Calculation of the intra-class correlation coefficient (ICC) revealed that all scorer comparisons in this study were far from acceptable for the reliability of this assay. Possible implications for the use of the CBMNT in human biomonitoring studies are discussed.  相似文献   

18.
The aim of this study was to assess occupationally induced chromosomal damage in a large population of hospital workers exposed to low doses of ionizing radiation. We used the cytokinesis-block micronucleus (CBMN) assay in the peripheral lymphocytes of 132 exposed workers compared with 69 controls matched for gender, age and smoking habits. The CBMN assay was combined with fluorescence in situ hybridization with a human pan-centromeric DNA probe in 32 exposed subjects and 30 controls randomly chosen from the initial populations. Occupational dosimetry records were collected over the last 10-year period and revealed very low exposure levels. The average binucleated micronucleated cell rate (BMCR) was significantly higher in the exposed subjects than in the controls (14.9 per thousand+/-8.1 versus 11.8 per thousand+/-6.5; P=0.011). About one-third of the micronuclei were centromere-negative in the exposed and control groups. BMCR significantly positively correlated with donor age in the exposed population; this correlation was at the border of significance in the control group. In the two groups, BMCR was significantly greater in females than in males, and the significant correlation between age and BMCR was observed in the female population, but not in the male one. No effect of smoking habits emerged. Univariate analysis revealed a possible influence of familial cancer history and diagnostic medical radiation dose (estimated from examinations reported in the questionnaire) on BMCR. Multiple regression analysis, taking into account all the previous confounding factors, showed that only occupational exposure status, gender and age had a significant effect on BMCR. In conclusion, the present study shows that chromosomal damage leading to micronucleated lymphocytes is more frequent in hospital workers exposed to ionizing radiation than in controls, despite the very low levels of exposure.  相似文献   

19.
The rationale for cytogenetic monitoring to determine if safe maximum allowable concentrations (MAC) of genotoxic chemicals are being maintained in a workplace is that exposure levels that do not increase chromosomal aberration frequencies are without harmful effects. Such monitoring, widely used in occupational health programs in the Czech Republic (CR), includes workers exposed to 1,3-butadiene (BD) or other chemicals. Studies of BD exposed workers in the years 1992, 1993, 1994, 1998, and 2004 compared mean frequencies of cells carrying chromosomal aberrations (frequency of aberrant cells=%AB.C.) in exposed workers with those in non-exposed matched controls in the same plant or in other individuals living in the region of the same petrochemical industry. Workers potentially exposed to acrylonitrile at this site were also evaluated in 2000, along with another unexposed matched control group. The %AB.C. values of exposed workers and their controls were also compared with reference values determined for normal individuals (ages 20-59 years) throughout the CR. Substantial discrepancies were noted between subjects in the region of the petrochemical industry (exposed workers and controls) for the years 2000 and 2004 and the reference CR-wide normal values that had been determined during an earlier time period. The matched non-exposed controls at the petrochemical industry site showed a mean %AB.C. value of 1.56+/-1.23% (N=25) in 1998; this rose to a mean of 2.65+/-2.29% (N=33) in 2000. In 2004, values for non-exposed matched controls at the industry site were 2.64+/-1.75% for males (N=25) and 2.38+/-1.74% (N=26) for females. However, the earlier determined CR-wide %AB.C. mean reference values for normal individuals were 1.77+/-1.16% (N=1305) for the interval 1977-1988 and 1.45+/-1.17% (N=2140) for the interval 1991-1999. As both reference values are substantially lower than those determined in 2000 and 2004 for the non-exposed matched controls at the petrochemical industry site, an analysis of the CR-wide mean normal individual reference values for this same 2000-2004 period was conducted. Unexpectedly, it was found that this reference value too had risen to 1.95+/-1.36% (N=1045) and was comparable to the concurrent matched control values at the petrochemical industry site where the monitoring studies were conducted. This substantial increase in %AB.C. values in 2000 and 2004, therefore, has occurred throughout the CR and is probably unrelated to chemicals uniquely present at the petrochemical industry site.  相似文献   

20.
Thermoelectric power-plant workers are constantly exposed to high levels of potentially genotoxic gaseous substances, such as volatile organic compounds (VOCs) from the combustion of fuel oil or the processing of naphtha. The aim of the present study was to estimate the association between such occupational exposure and the frequency of micronucleated cells and cells with other nuclear anomalies. Buccal epithelial cells were collected from a total of 44 power-plant workers (exposed group) and 47 administrative workers (non-exposed group), and examined for the frequency of micronucleated cells (MNC) and of cells with other nuclear anomalies (ONA: pyknosis, karyolysis, and karyorrhexis) by means of the micronucleus assay. The frequencies of MNC and ONA per 1000 cells in the exposed group (1.8‰ and 82.4‰, respectively) were significantly higher than in the non-exposed group (0.2‰ and 58.3‰, respectively). The exposed group had a twelve-fold increase in risk for formation of MNC compared with non-exposed individuals (RR=12.1; 95% CI, 5.0-29.2; P<0.001). The confounding factors analyzed (age, smoking status, alcohol consumption, and mouthwash use) did not show any significant association with the frequency of MNC or ONA. The findings of this study show that workers from power plants exposed to VOCs have a significantly elevated risk for DNA damage. Therefore, bio-monitoring of DNA damage is recommended for this group of workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号