首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Restriction fragment length polymorphisms (RFLPs) were used to study the population genetics and temporal dynamics of the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis. The population dynamics were addressed by comparing samples collected from 1995 to 1999 from six locations, spanning four different edaphoclimatic zones (ECZs). Forty-five different X. axonopodis pv. manihotis RFLP types or haplotypes were identified between 1995 and 1999. High genetic diversity of the X. axonopodis pv. manihotis strains was evident within most of the fields sampled. In all but one site, diversity decreased over time within fields. Haplotype frequencies significantly differed over the years in all but one location. Studies of the rate of change of X. axonopodis pv. manihotis populations during the cropping cycle in two sites showed significant changes in the haplotype frequencies but not composition. However, variations in pathotype composition were observed from one year to the next at a single site in ECZs 1 and 2 and new pathotypes were described after 1997 in these ECZs, thus revealing the dramatic change in the pathogen population structure of X. axonopodis pv. manihotis. Disease incidence was used to show the progress of cassava bacterial blight in Colombia during the 5-year period in different ecosystems. Low disease incidence values were correlated with low rainfall in 1997 in ECZ 1.  相似文献   

2.
Restriction fragment length polymorphisms (RFLPs) were used to study the population genetics and temporal dynamics of the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis. The population dynamics were addressed by comparing samples collected from 1995 to 1999 from six locations, spanning four different edaphoclimatic zones (ECZs). Forty-five different X. axonopodis pv. manihotis RFLP types or haplotypes were identified between 1995 and 1999. High genetic diversity of the X. axonopodis pv. manihotis strains was evident within most of the fields sampled. In all but one site, diversity decreased over time within fields. Haplotype frequencies significantly differed over the years in all but one location. Studies of the rate of change of X. axonopodis pv. manihotis populations during the cropping cycle in two sites showed significant changes in the haplotype frequencies but not composition. However, variations in pathotype composition were observed from one year to the next at a single site in ECZs 1 and 2 and new pathotypes were described after 1997 in these ECZs, thus revealing the dramatic change in the pathogen population structure of X. axonopodis pv. manihotis. Disease incidence was used to show the progress of cassava bacterial blight in Colombia during the 5-year period in different ecosystems. Low disease incidence values were correlated with low rainfall in 1997 in ECZ 1.  相似文献   

3.
Strains of Xanthomonas axonopodis pv. manihotis (Xam) were characterized for pathogenicity and for DNA polymorphism using different PCR-based techniques. Using amplified restriction fragment length polymorphism (AFLP), strains were distinguished from each other and also from other Xanthomonas strains. Cluster analysis showed a high correlation between DNA polymorphism and pathogenicity. Four Xam strains were further analyzed using three PCR-based techniques, AFLP, AFLP-pthB and RAPD-pthB. Various primer combinations were used including primers specific to a Xam pathogenicity gene (pthB) along with RAPD or AFLP primers. The AFLP primer combinations EcoRI+T/MseI+A and EcoRI+T/MseI+T were the most efficient to discriminate among pathogenic and nonpathogenic Xam strains. Polymorphic bands were excised from the gel, amplified and cloned. Sequences analysis showed significant homology with bacterial pathogenicity island, genes involved in pathogenic fitness and regulators of virulence. Three cloned AFLP fragments were used as probes in DNA blot experiments and two of them showed significant polymorphism.  相似文献   

4.
A collection of 51 Xanthomonas campestris strains from throughout the world was studied to detect and assess genetic diversity among pathogens of small grains. Isolates from barley, bread wheat, bromegrass, canary grass, cassava, maize, orchard grass, rice, rough-stalked meadow grass, rye, timothy, and triticale were analyzed by pathogenicity tests on bread wheat cv. Alondra and barley cv. Corona, indirect immunofluorescence, and restriction fragment length polymorphism (RFLP). Three probes were used for the RFLP analysis. They were an acetylaminofluorene-labelled 16S+23S rRNA probe from Escherichia coli and two (sup32)P-labelled restriction fragments from either plasmidic (pBSF2) or chromosomal (pBS8) DNA of X. campestris pv. manihotis. Strains clustered in 9 and 20 groups with the rRNA probe and the pBSF2 DNA probe, respectively. Strains of X. campestris pv. graminis, X. campestris pv. phleipratensis, and X. campestris pv. poae are shown to be related but are also distinguishable by RFLP patterns, serology, and pathogenicity on bread wheat. Strains pathogenic only for barley and not for wheat grouped together. Another group is temporarily designated deviant X. campestris pv. undulosa. These South American isolates from bread wheat did not react by indirect immunofluorescence and produced atypical lesions in pathogenicity tests. The results stress the need to perform pathogenicity tests before strains are named at the pathovar level. The importance of the different probes used for epidemiological studies or phylogenetic studies of closely related strains is underlined.  相似文献   

5.
Xanthomonas axonopodis pv manihotis is the causal agent of cassava bacterial blight (CBB) worldwide. CBB disease is a major constraint to cassava cultivation, and losses can be extremely severe in regions where highly susceptible cultivars are grown. To develop an efficient disease management policy, the genetic diversity of the pathogens population must be known. There is dearth of information on the genetic diversity of X. axonopodis pv manihotis population in Nigeria. We used RAPD (random amplified polymorphic DNA) and AFLP (amplified fragment length polymorphism), a PCR-based technique, to characterize the X. axonopodis pv manihotis isolates from the western States of Nigeria. Thirteen strains Xam and 2 reference strains were tested with eight primers combination of AFLP and 4 RAPD primers. RAPD amplified DNA fragment data showed four major clusters at 80 % similarity coefficient level and two strains were not clustered by this analysis. Strains Kwa76A and Ond48A were also separated in the principal component analysis of the same data. Numerical analysis differentiated the AFLP patterns into four distinct clusters and grouped two strains separately at 66 % similarity. PCA assembly grouped the bacterial strains into 4 and one of the strains was singled out from the others. The two DNA analyses techniques seem to be complimentary to one another and informative on the genomic structure of Xam population in Western Nigeria. The genetic analysis presented here contributes to understanding of the Xam population structure in Western Nigeria.  相似文献   

6.
The bacterial plant pathogen Xanthomonas axonopodis pv. vesicatoria, also known as Xanthomonas campestris pv. vesicatoria group A, is the causal agent of bacterial spot in pepper and tomato. In order to test different models that may explain the coevolution of avrBs2 with its host plants, we sequenced avrBs2 and six chromosomal loci (total of 5.5 kb per strain) from a global sample of 55 X. axonopodis pv. vesicatoria strains collected from diseased peppers. We found an extreme lack of genetic variation among all X. axonopodis pv. vesicatoria genomic loci (average nucleotide diversity, pi = 9.1 x 10(-5)), including avrBs2. This lack of diversity is consistent with X. axonopodis pv. vesicatoria having undergone a recent population bottleneck and/or selective sweep followed by population expansion. Coalescent analysis determined that approximately 1.4 x 10(4) to 7.16 x 10(4) bacterial generations have passed since the most recent common ancestor (MRCA) of the current X. axonopodis pv. vesicatoria population. Assuming a range of 50 to 500 bacterial generations per year, only 28 to 1,432 years have passed since the MRCA. This time frame coincides with human intervention with the pathogen's host plants, from domestication to modern agricultural practices. Examination of 19 mutated (loss-of-function) avrBs2 alleles detected nine classes of mutations. All mutations affected protein coding, while no synonymous changes were found. The nature of at least one of the avrBs2 mutations suggests that it may be possible to observe one stage of an evolutionary arms race as X. axonopodis pv. vesicatoria responds to selection pressure to alter avrBs2 to escape host plant resistance.  相似文献   

7.
Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava.  相似文献   

8.
Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity.  相似文献   

9.
The stabilization locus parB was subcloned into the broad host range plasmid pAP2, which contains the alpha-amylase gene from Bacillus subtilis, and introduced into Xanthomonas campestris pv campestris and X.c.pv manihotis. Analysis of the stability of plasmid pAP2 (parB-) and pAP23 (parB+) showed that the parB locus decreased significantly the plasmid loss rate mainly by X.c.pv campestris. The lower efficiency of stabilization in X.c.pv manihotis was probably due to the incompatibility system between the native plasmids and the newly introduced pAP23. Although parB had conferred higher stability, it determined a lower rate of alpha-amylase activity even by the strain Cm where its stabilization rate was higher.  相似文献   

10.
Xanthomonas citri pv. citri is a clonal group of strains that causes citrus canker disease and appears to have originated in Asia. A phylogenetically distinct clonal group that causes identical disease symptoms on susceptible citrus, X. citri pv. aurantifolii, arose more recently in South America. Genomes of X. citri pv. aurantifolii strains carry two DNA fragments that hybridize to pthA, an X. citri pv. citri gene which encodes a major type III pathogenicity effector protein that is absolutely required to cause citrus canker. Marker interruption mutagenesis and complementation revealed that X. citri pv. aurantifolii strain B69 carried one functional pthA homolog, designated pthB, that was required to cause cankers on citrus. Gene pthB was found among 38 open reading frames on a 37,106-bp plasmid, designated pXcB, which was sequenced and annotated. No additional pathogenicity effectors were found on pXcB, but 11 out of 38 open reading frames appeared to encode a type IV transfer system. pXcB transferred horizontally in planta, without added selection, from B69 to a nonpathogenic X. citri pv. citri (pthA::Tn5) mutant strain, fully restoring canker. In planta transfer efficiencies were very high (>0.1%/recipient) and equivalent to those observed for agar medium with antibiotic selection, indicating that pthB conferred a strong selective advantage to the recipient strain. A single pathogenicity effector that can confer a distinct selective advantage in planta may both facilitate plasmid survival following horizontal gene transfer and account for the origination of phylogenetically distinct groups of strains causing identical disease symptoms.  相似文献   

11.
Efficient control of Xanthomonas axonopodis pv. dieffenbachiae, the causal agent of anthurium bacterial blight, requires a sensitive and reliable diagnostic tool. A nested PCR test was developed from a sequence-characterized amplified region marker identified by randomly amplified polymorphic DNA PCR for the detection of X. axonopodis pv. dieffenbachiae. Serological and pathogenicity tests were performed concurrently with the nested PCR test with a large collection of X. axonopodis pv. dieffenbachiae strains that were isolated worldwide and are pathogenic to anthurium and/or other aroids. The internal primer pair directed amplification of the expected product (785 bp) for all 70 X. axonopodis pv. dieffenbachiae strains pathogenic to anthurium tested and for isolates originating from syngonium and not pathogenic to anthurium. This finding is consistent with previous studies which indicated that there is a high level of relatedness between strains from anthurium and strains from syngonium. Strains originating from the two host genera can be distinguished by restriction analysis of the amplification product. No amplification product was obtained with 98 strains of unrelated phytopathogenic bacteria or saprophytic bacteria from the anthurium phyllosphere, except for a weak signal obtained for one X. axonopodis pv. allii strain. Nevertheless, restriction enzyme analysis permitted the two pathovars to be distinguished. The detection threshold obtained with pure cultures or plant extracts (10(3) CFU ml(-1)) allowed detection of the pathogen from symptomless contaminated plants. This test could be a useful diagnostic tool for screening propagation stock plant material and for monitoring international movement of X. axonopodis pv. dieffenbachiae.  相似文献   

12.
ISXax1 is a novel insertion sequence belonging to the IS256 and Mutator families. Dot blot, Southern blot, and PCR analyses revealed that ISXax1 is restricted to Xanthomonas axonopodis pv. phaseoli (variants fuscans and non-fuscans) and X. axonopodis pv. vesicatoria strains. Directed AFLP also showed that a high degree of polymorphism is associated with ISXax1 insertion in these strains.  相似文献   

13.
Fluorescent amplified fragment length polymorphism revealed that strains of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans are genetically distinct and can be grouped into four genetic lineages. Four suppression subtractive hybridizations were then performed to isolate DNA fragments present in these bean pathogens and absent from closely related xanthomonads. Virulence gene candidates were identified such as homologs of hemagglutinins, TonB-dependent receptors, zinc-dependent metalloproteases, type III effectors, and type IV secretion system components. Unexpectedly, homologs of the type III secretion apparatus components (SPI-1 family), usually reported in animal pathogens and insect symbionts, were also detected.  相似文献   

14.
4 hybridoma cell lines (named F1-AA9-D9, F1-AB3-B6, F1-BC7-C1 and F2-CA7-F11) secreting monoclonal antibodies to Xanthomonas campestris pv. undulosa were produced by fusing splenocytes from immunized Lou rats with IR983F myeloma cells. Whole cells were used both as immunogen and as antigen in ELISA and indirect immunofluorescence tests.
The monoclonal antibodies produced reacted positively with X. c. pv. undulosa (38 strains), pv. translucens (3), pv. hordei (3), pv. cerealis (2) and pv. secalis (1).
Strains from other pathovars ( X. c. pv. arrhenatheri, pv. graminis, pv. manihotis, pv. oryzicola, pv. poae and pv. pruni ) and from other species ( X axonopodis, X. ampelina ) and genus ( Pseudomonas, Erwinia, Clavibacter , wheat saprophytic strains) gave a negative reaction. In comparison, seven polyclonal rabbit antisera showed to be less specific: they reacted with unrelated X. campestris pathovars as well as with Pseudomonas strains. Nevertheless, the use of phenol-treated cells in Ouchterlony double immunodiffusion could reduce the effect of cross-reaction for antisera.
The detection of X. c. pv. undulosa by indirect immunofluorescence on infected wheat seed lots has already been applied with success.  相似文献   

15.
The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease.  相似文献   

16.
17.
Xanthomonas axonopodis pv. citri is the causal agent of citrus canker, which is one of the most serious diseases of citrus. To understand the virulence mechanisms of X. axonopodis pv. citri, we designed and conducted genome-wide microarray analyses to characterize the HrpG and HrpX regulons, which are critical for the pathogenicity of X. axonopodis pv. citri. Our analyses revealed that 232 and 181 genes belonged to the HrpG and HrpX regulons, respectively. In total, 123 genes were overlapped in the two regulons at any of the three selected timepoints representing three growth stages of X. axonopodis pv. citri in XVM2 medium. Our results showed that HrpG and HrpX regulated all 24 type III secretion system genes, 23 type III secretion system effector genes, and 29 type II secretion system substrate genes. Our data revealed that X. axonopodis pv. citri regulates multiple cellular activities responding to the host environment, such as amino acid biosynthesis; oxidative phosphorylation; pentose-phosphate pathway; transport of sugar, iron, and potassium; and phenolic catabolism, through HrpX and HrpG. We found that 124 and 90 unknown genes were controlled by HrpG and HrpX, respectively. Our results suggest that HrpG and HrpX interplay with a global signaling network and co-ordinate the expression of multiple virulence factors for modification and adaption of host environment during X. axonopodis pv. citri infection.  相似文献   

18.
Genetic Diversity of Xanthomonas oryzae pv. oryzae in Asia   总被引:7,自引:0,他引:7       下载免费PDF全文
Restriction fragment length polymorphism and virulence analyses were used to evaluate the population structure of Xanthomonas oryzae pv. oryzae, the rice bacterial blight pathogen, from several rice-growing countries in Asia. Two DNA sequences from X. oryzae pv. oryzae, IS1112, an insertion sequence, and avrXa10, a member of a family of avirulence genes, were used as probes to analyze the genomes of 308 strains of X. oryzae pv. oryzae collected from China, India, Indonesia, Korea, Malaysia, Nepal, and the Philippines. On the basis of the consensus of three clustering statistics, the collection formed five clusters. Genetic distances within the five clusters ranged from 0.16 to 0.51, and distances between clusters ranged from 0.48 to 0.64. Three of the five clusters consisted of strains from a single country. Strains within two clusters, however, were found in more than one country, suggesting patterns of movement of the pathogen. The pathotype of X. oryzae pv. oryzae was determined for 226 strains by inoculating five rice differential cultivars. More than one pathotype was associated with each cluster; however, some pathotypes were associated with only one cluster. Most strains from South Asia (Nepal and India) were virulent to cultivars containing the bacterial blight resistance gene xa-5, while most strains from other countries were avirulent to xa-5. The regional differentiation of clusters of X. oryzae pv. oryzae in Asia and the association of some pathotypes of X. oryzae pv. oryzae with single clusters suggested that strategies that target regional resistance breeding and gene deployment are feasible.  相似文献   

19.
The polyacrylamide gel electrophoresis system (PAGE) and inhibition tests for biochemical characterization of alpha- and beta-esterases were used to obtain a functional classification of esterases in plants and to show a differential expression of esterases as markers of pathogenesis in cassava plants (Manihot esculenta Crantz). The characterization of alpha- and beta-esterases from leaves of M. esculenta by the PAGE system was possible using an extraction solution containing two phenol-complexing agents (PVP-40 and sodium metabisulfite), three antioxidant agents (EDTA, beta-mercaptoethanol, and DTT), and one quinone reducer (ascorbic acid). Fourteen esterase isozymes were detected in young unexpanded leaves of M. esculenta cultivars. The inhibition pattern of alpha- and beta-esterases of M. esculenta showed that Est-9 is an arylesterase, and in the unexpanded leaves of the M. esculenta plants infected with Xanthomonas axonopodis pv. manihotis, the Est-7 beta-esterase showed the characteristic staining of an alpha/beta-esterase. This diffrential expression of Est-7 isozyme in young unexpanded leaves of cassava plants can be used as a marker of pathogenesis after infection with X. axonopodis pv. manihotis.  相似文献   

20.
Cassava bacterial blight (CBB) is caused by Xanthomonas axonopodis pv. manihotis (Xam). Resistance is found in Manihot esculenta and, in addition, has been introgressed from a wild relative, M. glaziovii. The resistance is thought to be polygenic and additively inherited. Ninety-three varieties of M. esculenta (Crantz) were assessed by AFLPs for genetic diversity and for resistance to CBB. AFLP analysis was performed using two primer combinations and a 79.2% level of polymorphism was found. The phenogram obtained showed between 74% and 96% genetic similarity among all cassava accessions analysed. The analysis permitted the unique identification of each individual. Two Xam strains were used for resistance screening. Variation in the reaction of cassava varieties to Xam strains was observed for all plant accessions. The correlation of resistance to both strains, had a coefficient of 0.53, suggesting the independence of resistance to each strain. Multiple correspondence analysis showed a random distribution of the resistance/susceptibility response with respect to overall genetic diversity as measured by AFLP analysis. A total heterozygosity index was calculated to determine the diversity within clusters as well as among them. Our results demonstrate that resistance to CBB is broadly distributed in cassava germplasm and that AFLP analysis is an effective and efficient means of providing quantitative estimates of genetic similarities among cassava accessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号