首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cytidylyltransferase activity in fresh cytosol from different tissues of the rat was measured in the absence and presence of phosphatidylglycerol. In all cases addition of this lipid produced large increases in enzyme activity. Agarose gel (A-5.0) filtration profiles of the enzyme activities indicated that the L-form of the enzyme (190 000 molecular weight) predominated in liver, brain, kidney, and fetal lung. However, adult lung cytosol contained 70--80% of the activity in the H-form (molecular weight greater than or equal to 5 x 10(6)). Removal of phospholipid material from the alveolar spaces by lavage produced a significant reduction of the H-form of the enzyme in the cytosol fraction. The L-form of the cytidylyltransferases from fetal lung and adult liver, kidney, and brain all possess the same specificities for activation by phospholipids in vitro. In all cases, phosphatidylglycerol was the most potent activator at 0.2 mM. Lysophosphatidylethanolamine stimulated enzyme activity, whereas lysophosphatidylglycerol was a potent inhibitor. These studies implicate the role of acidic phospholipids in the regulation of cytidylyltransferase activity in vivo and the existence of a common L-form of the enzyme in serveral tissues of the rat.  相似文献   

2.
The activity of the low molecular weight form of cytidylyltransferase from fetal lung cytosol and adult liver cytosol was stimulated more by phosphatidylcholine-oleic acid (1:1 molar ratio) vesicles than by phosphatidylglycerol vesicles. Phosphatidylcholine alone did not stimulate the activity, while oleic acid alone produced only slight stimulation. Vesicles prepared from phosphatidylinositol, phosphatidylglycerol-cholesterol (2:1) and phosphatidylglycerol-phosphatidylcholine (1:1) all stimulated the activity to the same extent. Phosphatidylcholine-oleic acid vesicles (molar ratio 2:1) produced less stimulation than 1:1 vesicles. Phosphatidylcholine-palmitic acid vesicles (2:1) were about 50% as active as the corresponding phosphatidylcholine-oleic acid vesicles. All vesicles were in the size range of small unilamellar vesicles as judged by Sephacryl S-1000 chromatography. Stimulation also occurred when phosphatidylcholine vesicles and oleic acid were added separately to the assay. The stimulation by phospholipid vesicles was correlated with the ability of the vesicles to bind cytidylyltransferase, determined by sucrose density centrifugation of the enzyme-vesicles mixtures. We conclude that the stimulation of soluble cytidylyltransferase occurs through binding of the enzyme to anionic membrane surfaces. Suitable anionic membranes can be prepared either from anionic phospholipids, or by the addition of anionic lipids (unesterified fatty acids or phosphatidylglycerol) to phosphatidylcholine.  相似文献   

3.
A number of previous studies using in vivo and cultured fetal lung models have shown that the activity of choline-phosphate cytidylyltransferase, the enzyme which catalyzes a rate-limiting reaction in de novo phosphatidylcholine synthesis, is increased by glucocorticoids and other hormones which accelerate fetal lung maturation. To examine the mechanism of this glucocorticoid action further, we examined the effect of dexamethasone on cytidylyltransferase activity in cultured fetal rat lung explants and related it to specific dexamethasone binding. Dexamethasone stimulated cytidylyltransferase activity in the homogenate, microsomal and 105,000 X g supernatant fractions. The hormone did not alter the subcellular distribution of the enzyme, however; the bulk of the activity was in the supernatant fraction in both the control and dexamethasone-treated cultures. The dose-response curves for stimulation of cytidylyltransferase activity in the supernatant fraction and specific nuclear binding of dexamethasone were similar and both plateaued at approx. 20 nM. The EC50 for cytidylyltransferase stimulation was 6.6 nM and the Kd for dexamethasone binding was 6.8 nM. The relative potencies of various steroids for stimulating choline-phosphate cytidylyltransferase and for specific nuclear glucocorticoid binding were the same: dexamethasone greater than cortisol = corticosterone = dihydrocorticosterone greater than progesterone. The stimulation by dexamethasone of cytidylyltransferase activity and of choline incorporation into phosphatidylcholine were both abolished by actinomycin D. These data show that the stimulatory effect of dexamethasone on fetal rat lung choline-phosphate cytidylyltransferase activity is largely on the enzyme in the supernatant fraction and does not involve enzyme translocation to the microsomes as has been reported for cytidylyltransferase activation in some other systems. This effect of dexamethasone is a receptor-mediated process dependent on RNA and protein synthesis.  相似文献   

4.
The reaction catalyzed by CTP:phosphocholine cytidylyltransferase in the reverse direction, i.e. the formation of CTP and phosphocholine from CDP-choline and pyrophosphate, is slightly faster than the reaction in the forward direction. The reverse reaction is optimal at 2 mM pyrophosphate and 6 mM Mg2+, in both fetal and adult preparations. The apparent substrate Km values for phosphocholine, CDP-choline, and pyrophosphate are similar in the fetal and adult forms of the enzyme. The enzyme activity is separated into two forms by gel filtration. The enzyme from adult lung exists as a high molecular weight species, ranging in size from 5 X 10(6) to 50 X 10(6). The enzyme from fetal lung exists as a 190,000 molecular weight species and is totally dependent upon added anionic phospholipid for activity in both the forward and reverse direction. The addition of phosphatidylglycerol gives maximal activity, while phosphatidylinositol or cardiolipin produce about 60 to 70% of the maximal activity. Enzyme activation is accompanied by an aggregation of the enzyme. A sonicated preparation of phosphatidylglycerol is a more efficient activator than a preparation mixed on a Vortex mixer (KA = 30 micronM) and also converts a larger proportion of enzyme from fetal lung into a high molecular weight species. The enzyme from adult lung can be dissociated into a form in fetal lung. The dissociated species can be converted back to a high molecular weight form in the presence of phosphatidylglycerol.  相似文献   

5.
Lung cytosolic cholinephosphate cytidylyltransferase is activated by lipids. We examined the lipid activation pattern as a function of development in rabbit lung from 27 days gestation through term (31 days) and in the adult. The enzyme in both the fetal and adult cytosol was dependent on lipids for activity. Extraction of the cytosol with acetone/butanol virtually abolished cytidylyltransferase activity, but the activity could be restored on addition of lipids extracted with chloroform/methanol from additional cytosol. Cytosolic phospholipids from the fetal lung reactivated cytidylyltransferase but both neutral lipids and phospholipids from the adult were required. The lipids had the same effect on cytidylyltransferase activity in delipidated cytosol from either the fetus or adult so the difference in activation pattern was attributable to the lipids rather than the protein. There was a shift from the fetal to the adult lipid activation pattern as development progressed. Further, there was a significant correlation between cytidylyltransferase activities in intact cytosols from developing lung and activities in delipidated cytosol in the presence of lipids from the same animals. Although these data suggest that lipids regulate cytosolic cytidylyltransferase activity in developing lung their physiological significance remains to be established.  相似文献   

6.
We have investigated the mechanism by which estrogen stimulates phosphatidylcholine synthesis in fetal rabbit lung. The hormone increased the activity of cholinephosphate cytidylyltransferase in the 105 000 X g supernatant fraction but had no effect on the activities of this enzyme in the homogenate or other subcellular fractions. Although microsomal cytidylyltransferase has been reported to regulate phosphatidylcholine synthesis in other systems, and translocation of the enzyme from cytosol to microsomes has been reported in association with increased phosphatidylcholine synthesis, we found no evidence of this in the case of estrogen-stimulated phosphatidylcholine synthesis in the fetal lung. Cytosolic cytidylyltransferase activity was dependent on phospholipids. Extraction with acetone/butanol drastically reduced its activity as well as the stimulatory effect of estrogen. The activity and the effect of estrogen were restored on re-addition of lipids extracted with chloroform/methanol from additional supernatants. Fractionation of the total lipids revealed that the stimulatory effect was entirely associated with the phospholipids; neutral lipids and glycolipids did not stimulate. Treatment of the phospholipid fraction with phospholipase C abolished the stimulatory effect. The stimulatory effect of estrogen, however, could not be attributed to any individual phospholipid species but appeared to require the entire phospholipid mixture. We conclude that estrogen stimulates fetal lung phosphatidylcholine synthesis by increasing the activity of cytosolic cytidylyltransferase and this activation in turn is mediated by cytosolic phospholipids.  相似文献   

7.
Glucose, a major metabolic substrate for the mammalian fetus, probably makes significant contributions to surface active phospholipid synthesis in adult lung. We examined the developmental patterns of glycogen content, glycogen synthase activity, glycogen phosphorylase activity and glucose oxidation in fetal and newborn rat lung. These patterns were correlated with the development of phosphatidylcholine synthesis, content and the activities of enzymes involved in phosphatidylcholine synthesis. Fetal lung glycogen concentration increased until day 20 of gestation (term is 22 days) after which it declined to low levels. Activity of both glycogen synthase I and total glycogen synthase (I + D) in fetal lung increased late in gestation. Increased lung glycogen concentration preceded changes in enzyme activity. Glycogen phosphorylase a and total glycogen phosphorylase (a + b) activity in fetal lung increased during the period of prenatal glycogen depletion. The activity of the pentose phosphate pathway, as measured by the ratio of CO2 derived from oxidation of C1 and C6 of glucose, declined after birth. Fetal lung total phospholipid, phosphatidycholine and disaturated phosphatidylcholine content increased by 60, 90 and 180%, respectively, between day 19 of gestation and the first postnatal day. Incorporation of choline into phosphatidylcholine and disaturated phosphatidylcholine increased 10-fold during this time. No changes in phosphatidylcholine enzyme activities were noted during gestation, but both choline phosphate cytidylyltransferase and phosphatidate phosphatase activity increased after birth. The possible contributions of carbohydrate derived from fetal lung glycogen to phospholipid synthesis are discussed.  相似文献   

8.
CTP : phosphocholine cytidylyltransferase activity exists in both the microsome and cytosol fractions of adult lung, 36 and 59%, respectively. Although these enzyme activities are stimulated in vitro by added lipid activators (i.e. phosphatidylglycerol), there are significant levels of activity in the absence of added lipid. We have removed endogenous lipid material from microsome and cytosol preparations of rat lung by rapid extraction with isopropyl ether. The extraction procedure did not cause any loss of cytidylyltransferase activity in the cytosol. After the extraction the enzyme was almost completely dependent upon added lipid activator. Isopropyl ether extraction of microsome preparations produced a loss of 40% of the cytidylyltransferase activity, when measured in the presence of added phosphatidylglycerol. Lipid material extracted into isopropyl ether restored the cytidylyltransferase activity in cytosol. The predominant species of enzyme activator in the isopropyl ether extracts was fatty acid. A variety of naturally occurring unsaturated fatty acids stimulated the cytidylyltransferase to the same extent as phosphatidylglycerol. Saturated fatty acids were inactive.  相似文献   

9.
The activities of three enzymes involved in phospholipid synthesis, sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), cholinephosphate cytidylyltransferase (EC 2.7.7.15), and cholinephosphotransferase (EC 2.7.8.2), were assayed in adult skeletal muscle. The acyltransferase and cholinephosphotransferase were concentrated in the sarcoplasmic reticulum, where their specific activities were 80 and 33%, respectively, of the specific activity in liver microsomes. Cytidylyltransferase activity was distributed throughout the cell with most of the activity in the cytosol. Its activity in muscle was only 10% of liver activity. Functional sarcoplasmic reticulum was isolated by density gradient centrifugation after calcium loading in the presence of phosphate. The specific activities of these enzymes wee undiminished in the calcium-loaded fraction, suggesting that these enzymes are intrinsic components of the sarcoplasmic reticulum. In developing muscle (2 and 6 days postnatal) acyltransferase and cholinephosphotransferase activities were also present in a calcium-loaded microsomal subfraction at the same level as in the adult. Cytidylyltransferase activity, on the other hand, was 8-fold higher in developing muscle. In addition, developing muscle had a 3-fold increase in the proportion of cytidylyltransferase associated with the microsomal fraction. These data suggest that sarcoplasmic reticulum has the capacity for phospholipid synthesis in mature and developing muscle, and that the rate of phosphatidylcholine synthesis may be regulated by the levels of cytidylyltransferase and by translocation of this enzyme between the sarcoplasmic reticulum and the cytosol.  相似文献   

10.
CTP:cholinephosphate cytidylyltransferase activities were compared in saline homogenates of immature fetal (15-16 weeks gestation) and adult human lung. There were no differences in subcellular enzyme distribution, in Vmax activity, or in the phosphatidylglycerol-mediated stimulation of soluble enzyme activity. These results provide no support for a developmental translocation of cytidylyltransferase from a cytosolic to a microsomal location in human lung, such as that proposed to accompany the maturation of pulmonary surfactant phosphatidylcholine biosynthesis in rat. Soluble cytidylyltransferase activity from human but not rat lung was increased after manipulation in vitro. Resolution of human H form (greater than 10(3) kDa) and L form (200 kDa) enzyme by gel filtration led to an activity increase of 200%. Incubation at 37 degrees C for 2 h increased soluble enzyme recovery, although prior centrifugal removal of generated actin-rich aggregates was necessary in adult lung fractions. In contrast, 85% of soluble rat lung cytidylyltransferase was actin aggregate-associated after incubation. The apparent heteroassociation of rat and human lung enzyme with actin in the presence of poly(ethylene glycol) at 4 degrees C strongly suggested close in vitro and potential in vivo linkage. A partial co-purification of adult human lung cytidylyltransferase with actin was also consistent with this idea. We propose that some reported cytidylyltransferase translocation phenomena may be mediated by cytoskeletal interactions in vitro.  相似文献   

11.
The enzymes responsible for the biosynthesis of phosphatidylglycerol, CTP:phosphatidate cytidylyltransferase, CDP-diacylglycerol: glycerophosphate phosphatidyltransferase and phosphatidylglycerophosphate phosphatase demonstrated a coordinate increase in activity in fetal rat lung at term when the demand for pulmonary surfactant increases. The activity of CTP:cholinephosphate cytidylyltransferase, the enzyme responsible for CDP-choline production also increased in the perinatal period. The activity of cholinephosphate cytidylyltransferase in fetal and neonatal cytosol was stimulated by the addition of phosphatidylglycerol but no effect was noted with cytosol from adult lung. These results are consistent with the suggestion that the activity of cholinephosphate cytidylyltransferase, a potential rate-determining enzyme in pulmonary phosphatidylcholine synthesis, may be regulated in the perinatal period both through an activation by phosphatidylglycerol and by an increase in total enzyme units.  相似文献   

12.
Fetal lung produces corticotropin-releasing hormone (CRH) without known direct effects. We tested the hypothesis that CRH can directly regulate lung development. In baboon fetal lung explants, CRH strongly induces surfactant phospholipid synthesis and SP-C immunostaining, plus [3H]thymidine incorporation. CRH receptor mRNA was detected in lung from multiple baboons at e125. Testing thyrotropin (TRH) as a specificity control, we did demonstrate different direct effects with only modest stimulation of surfactant phospholipid synthesis and strong induction of cytidylyltransferase gene expression. Therefore, CRH, similar to ACTH and glucocorticoids, is a potent inducer of cell differentiation in fetal lung.  相似文献   

13.
Diacylglycerol kinase activity is found in both adult and fetal lung. Approximately 27 and 52% of the total activity is found in microsomes and cytosol, respectively. The activity is maximal at pH 7.4. The apparent Km for ATP is 0.11 mM and 0.21 mM for cytosol and microsomes, respectively. The apparent Km for dioleoylglycerol is 0.05 mM for cytosol and 0.14 for microsomes. Maximal activity in cytosol and microsomes is obtained with 2.0 mM dexoycholate. Other detergents cannot substitute for deoxycholate. Phosphatidylglycerol stimulates activity in the absence and in the presence of deoxycholate. Phosphatidylserine also stimulates activity, whereas phosphatidylethanolamine was inactive and phosphatidylcholine inhibited the reaction. Linoleic acid produced inhibition. The general properties of the enzyme were similar for fetal and adult lung. Diacylglycerol kinase from microsomes and cytosol fraction from both fetal and adult lung was most active with dioleoylglycerol and diacylglycerol from egg phosphatidylcholine. Significantly lower activity was obtained with dipalmitoylglycerol. Phosphatidylglycerol did not alter the relative substrate preferences. The activity in microsomes increased with development from 19 days gestation to a maximal activity at 21 days gestation. Maximal activity was about 2-fold higher than the adult. The activity dropped rapidly reaching adult values prior to birth (22 days gestation). The activity in cytosol fractions increased gradually from 19 days gestation, reaching adult values by 22 days gestation.  相似文献   

14.
The cellular mechanism by which glucocorticoids stimulate phosphatidylcholine biosynthesis has been studied in the fetal rat lung in vivo and in cultured fetal rat lung cells of varying levels of complexity. Administration of dexamethasone to pregnant rats at 18 days gestation resulted in a significant increase in saturated phosphatidylcholine content in fetal lung 24 h after injection. Dexamethasone administration increased the activity of fetal lung choline-phosphate cytidylyltransferase by 34%. It had no effect on the activities of fetal lung choline kinase and choline phosphotransferase. Exposure of fetal lung type II cells in organotypic cultures (which contain both type II cells and fibroblasts) to cortisol resulted in a 1.6-fold increase in the incorporation of [Me-3H]choline into saturated phosphatidylcholine. The activities of the enzymes in the choline pathway for the de novo biosynthesis of phosphatidylcholine were not significantly altered except for a 105% increase in choline-phosphate cytidylyltransferase activity. Treatment of monolayer cultures of fetal type II cells with cortisol-conditioned medium from fetal lung fibroblasts resulted in a 1.5-fold increase in saturated phosphatidylcholine production. This effect correlated with a doubling of choline-phosphate cytidylyltransferase activity. Additional evidence that this stimulatory action is mediated by fibroblast-pneumonocyte factor, produced by fetal lung fibroblasts in response to cortisol, was obtained. The factor was partially purified from cortisol-conditioned medium of fetal lung fibroblasts by gel filtration and affinity chromatography. Based on biological activity, a 3000-fold purification was obtained. Stimulation of saturated phosphatidylcholine synthesis in type II cells by fibroblast-pneumonocyte factor was maximal within 60 min of incubation. Pulse-chase experiments indicated that the stimulatory effect was correlated with an increased conversion of choline phosphate into CDP choline. Moreover, the enhanced phosphatidylcholine formation by fetal type II cells in response to fibroblast-pneumonocyte factor was accompanied by decreased levels of cellular choline phosphate. These findings further support the concept that glucocorticoid action on surfactant-associated phosphatidylcholine synthesis occurs ultimately at the level of the alveolar type II cell and involves fibroblast-pneumonocyte factor which stimulates the activity of choline-phosphate cytidylyltransferase.  相似文献   

15.
The subcellular forms of cytidylyltransferase (EC 2.7.7.15) in rat lung, rat liver, Hep G2 cells, A549 cells and alveolar Type II cells from adult rats were separated by glycerol density centrifugation. Cytosol prepared from lung, Hep G2 cells, A549 cells and alveolar Type II cells contained two forms of the enzyme. These species were identical to the L-Form and H-Form isolated previously from lung cytosol by gel filtration. Liver cytosol contained only the L-Form. Rapid treatment of Hep G2 cells with digitonin released all of the cytoplasmic cytidylyltransferase activity. The released activity was present in both H-Form and L-Form. The molecular weight of L-Form was determined from sedimentation coefficients and Stokes radius values to be 97,690 +/- 10,175. Thus, the L-Form appears to be a dimer of the Mr 45,000 catalytic subunit. The f/f degrees value of 1.5 indicated that the protein molecule has an axial ratio of 10, assuming a prolate ellipsoid shape. The estimated molecular weight of the H-Form was 284,000 +/- 25,000. The H-Form was dissociated into L-Form by incubation of cytosol at 37 degrees C. Triton X-100 (0.1%) and chlorpromazine (1.0 mM) also dissociated the H-Form into L-Form. Western blot analysis indicated that both forms contained the catalytic subunit. An increase in Mr 45,000 subunit coincided with the increase in cytidylyltransferase activity in L-Form, which resulted from the dissociated of H-Form. The L-Form was dependent on phospholipid for activity. The H-Form was active without lipid. Phosphatidylinositol was present in the H-Form isolated from Hep G2 cells. The phosphatidylinositol dispersed when the H-Form was dissociated into L-Form. Phosphatidylinositol and phosphatidylglycerol cause L-Form to aggregate into a form similar to H-Form. Phosphatidylcholine/oleic acid (1:1 molar ratio) and oleic acid also aggregated the L-Form. Phosphatidylcholine did not produce aggregation. We conclude that the H-Form is the active form of cytidylyltransferase in cytoplasm. The H-Form appears to be a lipoprotein consisting of an apoprotein (L-Form dimer of the Mr 45,000 subunit) complexed with lipids. A change in the relative distribution of H-Form and L-Form in cytosol would alter the cellular activity and thus may be important in the regulation of phosphatidylcholine synthesis.  相似文献   

16.
A new model system for the study of phosphatidylcholine biosynthesis is presented. Young rats were fed a diet that contained 5% cholesterol and 2% cholate. After 6 days there was a 2-fold increase in the concentration of plasma phospholipid (243 mg/dl compared to 132 mg/dl for control animals) and a 3-fold increase in the concentration of plasma phosphatidylcholine. The rate of phosphatidylcholine biosynthesis was measured after injection of [Me-3H]choline into the portal veins. The incorporation of tritium into choline, phosphocholine and betaine by liver was similar for experimental and control animals, whereas there was a 3-fold increased incorporation into phosphatidylcholine of the cholesterol/cholate-fed rats. The activities of the enzymes of phosphatidylcholine biosynthesis in cytosol and microsomes were assayed. The only change detected was in the cytosolic and microsomal activities of CTP: phosphocholine cytidylyltransferase which were increased more than 2-fold in specific activity. When total cytidylyltransferase activity per liver was determined, a dramatic translocation of the enzyme to microsomes was observed. The control livers had 24% of the cytidylyltransferase activity associated with microsomes, whereas this value was 61% in the livers from cholesterol/cholate-fed rats. When the cytosolic cytidylyltransferase was assayed in the presence of phospholipid, the enzyme was stimulated several-fold and the difference in specific activity between control and cholesterol/cholate-fed rats was abolished. The increased activity in cytosol appears to be the result of a 2-fold increase in the amount of phospholipid in the cytosol from cholesterol/cholate-fed rats. The data strongly support the hypothesis that the special diet stimulates phosphatidylcholine biosynthesis by causing a translocation of the cytidylyltransferase from cytosol to microsomes where it is activated.  相似文献   

17.
The interrelationship between the inhibition of cell growth and changes in phospholipid molecular species was studied in the presence of elaidic, trans-11-eicosenoic, or brassidic acids in Chinese hamster V79-R cells. The addition of trans-monoenoic fatty acids to the medium inhibited cell growth and caused an increase in the total cellular content of phospholipids. However, there was no difference in the polar head group composition of these phospholipids among all the cells supplemented with trans-monoenoic fatty acids. Exogenous trans-monoenoic fatty acids were incorporated into cellular phospholipids to form novel phospholipid molecular species. Phospholipid synthesizing enzyme activities bound to the membranes composed of phospholipid molecular species of trans-monoenoic fatty acids were determined. Cholinephosphotransferase [EC 2.7.8.2] and ethanolaminephosphotransferase [EC 2.7.8.1] activities were decreased by trans-11-eicosenoic acid, but not changed by elaidic acid. Glycerophosphate acyltransferase [EC 2.3.1.15] activity was increased by elaidic acid and decreased by trans-11-eicosenoic acid. Cholinephosphate cytidylyltransferase [EC 2.7.7.15] activity was not changed by trans-monoenoic fatty acids.  相似文献   

18.
The purpose of this work is to compare the properties of phosphatidate phosphatase (L-alpha-phosphatidate phosphohydrolase, EC 3.1.3.4) in fetal and adult rat lung and to establish the developmental profile of activity measured under optimal conditions. The maximal pH of 6.0--7.0 and the inhibition by fluoride, Ca2+ and detergents were simialr for both adult and fetal. Phosphatidate phosphohydrolase activity was located in both mitochondria and microsomes. The localizations of marker enzymes indicated that the activity in these subfractions was not a result of cross contaminations. Very low activity was detected in the supernatant fraction and no Mg2+ requirement was demonstrable. The activity in the particulate fraction was about 50% of the adult from 18 day gestation until birth. Following birth, the activity rapidly increased to adult levels. Dipalmitoyl, dioleoyl and diacyl glycerol 3-phosphates are all utilized well as substrates. 1,2-dipalmitoyl-sn-glycerol 3-phosphate was hydrolyzed faster under maximal conditions. The velocity-substrate curves tended to be sigmoidal, particularly when 1,2-dipalmitoyl-sn-glycerol 3-phosphate was the substrate. Estimated apparent Km values of 0.02--0.03 mM were obtained for fetal and adult preparations.  相似文献   

19.
Corticosteroids are known to accelerate maturation of the fetal lung and production of surfactant. We examined the effect of cortisol administration to fetal rabbits on the phospholipid content and composition of lung lavage and lung tissue, as well as on the activities of enzymes involved in the synthesis of phosphatidylcholine and phosphatidylglycerol, the major surface-active components of surfactant. Cortisol was administered by intrauterine injection at 25 days' gestation and the fetuses were delivered at 27 days (full term, 31 days). Saline-injected fetuses, littermates of the cortisol-treated as well as non-littermates, were used as controls. The amount of phospholipid in lung lavage from the hormone-treated fetuses was almost double that of the saline-injected controls and was similar to that of an untreated fetus of more than 30 days' gestation. Similarly, the phospholipid composition of lung lavage from the hormone-treated fetuses was similar to that of an untreated fetus at a greater gestational age. These data, therefore, suggest that cortisol acts by accelerating physiological development. Cortisol administratration stimulated the activity of cholinephosphate cytidylyltransferase and lysolecithin acyltransferase to a small, but statistically significant extent. This is also consistent with an acceleration of normal development. The stimulation of lysolecithin acyltransferase is of interest, since this enzyme is believed to be involved in the synthesis of dipalmitoylglycerophosphocholine, the major surface-active species of phosphatidylcholine. Cortisol administration had no effect on the activities of pulmonary choline kinase, cholinephosphotransferase, lysophosphatidic acid acyltransferase and glycerolphosphate phosphatidyltranferase, although we have previously shown the latter enzyme to be stimulated following a longer period of exposure to the hormone. Saline injection produced some maturational effects presumably as a result of stress, which may be mediated by corticosteroids or other hormones.  相似文献   

20.
The role of phosphorylation/dephosphorylation in the regulation of CTP:phosphocholine cytidylyltransferase activity was investigated. Incubation of post mitochondrial supernatant with cAMP-dependent protein kinase (50 units) led to an increased (28%) recovery of the cytidylyltransferase in the cytosolic fraction, while incubation with an intestinal alkaline phosphatase (20 units) led to an increased (61%) recovery in the microsomal fraction. When pure cytidylyltransferase was incubated with washed microsomes in the presence of cAMP-dependent protein kinase (133 units), the enzyme associated with the supernatant fraction increased (3.12 +/- 0.02 to 3.77 +/- 0.03 nmol/min/ml) while that of the microsomal fraction decreased (1.36 +/- 0.01 to 0.56 +/- 0.05 nmol/min/ml) by 2.5-fold. The increase in the cytidylyltransferase activity in the supernatant corresponded to an increase in 32P incorporation into the cytidylyltransferase. Treatment with alkaline phosphatase (40 units) decreased the cytidylyltransferase activity in the supernatant (3.61 +/- 0.08 to 2.88 +/- 0.07 nmol/min/ml) while the activity in the microsomal fraction increased (0.56 +/- 0.08 to 1.16 +/- 0.06 nmol/min/ml) by 2-fold. The decrease in the cytidylyltransferase activity in the supernatant corresponded to a decrease in 32P incorporation into the cytidylyltransferase. Incubation of cytidylyltransferase with phosphatidylcholine vesicles in the presence of cAMP-dependent protein kinase (110 units) decreased the cytidylyltransferase activity by 30%. The decrease in cytidylyltransferase activity corresponded to an increase in 32P incorporation into the cytidylyltransferase. Treatment with alkaline phosphatase (20 units) resulted in a 41% increase in the cytidylyltransferase activity. The increase in cytidylyltransferase activity corresponded to a decrease in 32P incorporation into the cytidylyltransferase. Incubation of the cytidylyltransferase with [gamma-32P] ATP and cAMP-dependent protein kinase led to incorporation of 32P into the serine residues of cytidylyltransferase. If the cytidylyltransferase were preincubated with alkaline phosphatase prior to incubation with cAMP-dependent protein kinase, 2-fold more 32P (0.2 mol P/mol cytidylyltransferase) was incorporated into the cytidylyltransferase. Collectively, this data is in agreement with a role for reversible phosphorylation in the regulation of cytidylyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号