共查询到20条相似文献,搜索用时 0 毫秒
1.
CTP:cholinephosphate cytidylyltransferase in human and rat lung: association in vitro with cytoskeletal actin 总被引:1,自引:0,他引:1
CTP:cholinephosphate cytidylyltransferase activities were compared in saline homogenates of immature fetal (15-16 weeks gestation) and adult human lung. There were no differences in subcellular enzyme distribution, in Vmax activity, or in the phosphatidylglycerol-mediated stimulation of soluble enzyme activity. These results provide no support for a developmental translocation of cytidylyltransferase from a cytosolic to a microsomal location in human lung, such as that proposed to accompany the maturation of pulmonary surfactant phosphatidylcholine biosynthesis in rat. Soluble cytidylyltransferase activity from human but not rat lung was increased after manipulation in vitro. Resolution of human H form (greater than 10(3) kDa) and L form (200 kDa) enzyme by gel filtration led to an activity increase of 200%. Incubation at 37 degrees C for 2 h increased soluble enzyme recovery, although prior centrifugal removal of generated actin-rich aggregates was necessary in adult lung fractions. In contrast, 85% of soluble rat lung cytidylyltransferase was actin aggregate-associated after incubation. The apparent heteroassociation of rat and human lung enzyme with actin in the presence of poly(ethylene glycol) at 4 degrees C strongly suggested close in vitro and potential in vivo linkage. A partial co-purification of adult human lung cytidylyltransferase with actin was also consistent with this idea. We propose that some reported cytidylyltransferase translocation phenomena may be mediated by cytoskeletal interactions in vitro. 相似文献
2.
P G Casola F Chan P M Macdonald S Ryan W C McMurray F Possmayer 《Biochemical and biophysical research communications》1980,96(3):1209-1215
The enzymes responsible for the biosynthesis of phosphatidylglycerol, CTP:phosphatidate cytidylyltransferase, CDP-diacylglycerol: glycerophosphate phosphatidyltransferase and phosphatidylglycerophosphate phosphatase demonstrated a coordinate increase in activity in fetal rat lung at term when the demand for pulmonary surfactant increases. The activity of CTP:cholinephosphate cytidylyltransferase, the enzyme responsible for CDP-choline production also increased in the perinatal period. The activity of cholinephosphate cytidylyltransferase in fetal and neonatal cytosol was stimulated by the addition of phosphatidylglycerol but no effect was noted with cytosol from adult lung. These results are consistent with the suggestion that the activity of cholinephosphate cytidylyltransferase, a potential rate-determining enzyme in pulmonary phosphatidylcholine synthesis, may be regulated in the perinatal period both through an activation by phosphatidylglycerol and by an increase in total enzyme units. 相似文献
3.
Partial purification and characterization of CTP:cholinephosphate cytidylyltransferase from castor bean endosperm 总被引:1,自引:0,他引:1
CTP: cholinephosphate cytidylyltransferase (EC 2.7.7.15) has been purified approximately 600-fold from postgermination endosperm of castor bean. The enzyme was solubilized with n-octyl beta-D-glucopyranoside and then subjected to ion exchange and gel filtration chromatography. The Km's of the purified enzymatic activity were 0.37 and 1.1 mM for CTP and choline phosphate, respectively. Magnesium was required for activity. The purified cytidylyltransferase activity was inhibited by both phosphate and ATP. The extent of ATP inhibition was dependent on preincubation time, temperature, and Mg2+ and Ca2+ concentrations. The possible regulation of cytidylyltransferase in castor bean endosperm by protein phosphorylation is discussed. 相似文献
4.
CTP : phosphocholine cytidylyltransferase activity exists in both the microsome and cytosol fractions of adult lung, 36 and 59%, respectively. Although these enzyme activities are stimulated in vitro by added lipid activators (i.e. phosphatidylglycerol), there are significant levels of activity in the absence of added lipid. We have removed endogenous lipid material from microsome and cytosol preparations of rat lung by rapid extraction with isopropyl ether. The extraction procedure did not cause any loss of cytidylyltransferase activity in the cytosol. After the extraction the enzyme was almost completely dependent upon added lipid activator. Isopropyl ether extraction of microsome preparations produced a loss of 40% of the cytidylyltransferase activity, when measured in the presence of added phosphatidylglycerol. Lipid material extracted into isopropyl ether restored the cytidylyltransferase activity in cytosol. The predominant species of enzyme activator in the isopropyl ether extracts was fatty acid. A variety of naturally occurring unsaturated fatty acids stimulated the cytidylyltransferase to the same extent as phosphatidylglycerol. Saturated fatty acids were inactive. 相似文献
5.
Stimulation of cholinephosphate cytidylyltransferase activity by estrogen in fetal rabbit lung is mediated by phospholipids 总被引:1,自引:0,他引:1
We have investigated the mechanism by which estrogen stimulates phosphatidylcholine synthesis in fetal rabbit lung. The hormone increased the activity of cholinephosphate cytidylyltransferase in the 105 000 X g supernatant fraction but had no effect on the activities of this enzyme in the homogenate or other subcellular fractions. Although microsomal cytidylyltransferase has been reported to regulate phosphatidylcholine synthesis in other systems, and translocation of the enzyme from cytosol to microsomes has been reported in association with increased phosphatidylcholine synthesis, we found no evidence of this in the case of estrogen-stimulated phosphatidylcholine synthesis in the fetal lung. Cytosolic cytidylyltransferase activity was dependent on phospholipids. Extraction with acetone/butanol drastically reduced its activity as well as the stimulatory effect of estrogen. The activity and the effect of estrogen were restored on re-addition of lipids extracted with chloroform/methanol from additional supernatants. Fractionation of the total lipids revealed that the stimulatory effect was entirely associated with the phospholipids; neutral lipids and glycolipids did not stimulate. Treatment of the phospholipid fraction with phospholipase C abolished the stimulatory effect. The stimulatory effect of estrogen, however, could not be attributed to any individual phospholipid species but appeared to require the entire phospholipid mixture. We conclude that estrogen stimulates fetal lung phosphatidylcholine synthesis by increasing the activity of cytosolic cytidylyltransferase and this activation in turn is mediated by cytosolic phospholipids. 相似文献
6.
The purpose of these studies was to determine the properties of the membrane-bound cytidylyltransferase in adult lung and to assess the relationship between the microsomal enzyme and the two forms of cytidylyltransferase in cytosol. Microsomes, isolated by glycerol density centrifugation, contained significantly less cytidylyltransferase than microsomes isolated by differential centrifugation (11.6 +/- 3.2 vs. 30 +/- 11 nmol/min per g lung). The released activity was recovered as H-form cytidylyltransferase. Cytidylyltransferase activity was not removed from microsomes by washing of the microsomal pellet with homogenizing buffer. Triton X 100 extracted all of the cytidylyltransferase from microsomes. The extracted activity was similar to H-form. Chlorpromazine dissociated microsomal enzyme to L-form. Chlorpromazine has been shown previously to dissociate H-form to L-form. These results suggested that microsomal cytidylyltransferase existed in a form similar if not identical to cytosolic H-form. In vitro translocation experiments demonstrated that the L-form of cytidylyltransferase was the species which binds to microsomal membranes. Triton X 100 extraction of microsomes from translocations experiments removed the bound enzyme activity. Glycerol density fractionation indicated that the activity in the Triton extract was H-form cytidylyltransferase. We concluded that the active lipoprotein form of cytidylyltransferase (H-form) is the membrane-associated form of cytidylyltransferase in adult lung; that it is formed after the L-form binds to microsomal membranes and that cytosolic H-form is released from the membrane. 相似文献
7.
Kinetic and biochemical properties of CTP:choline-phosphate cytidylyltransferase from the rat brain 总被引:3,自引:0,他引:3
In order to investigate the mechanisms involved in some brain disorders at the membrane level, we studied the kinetics and biochemical properties of brain CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15), the rate-limiting enzyme of the two-step biosynthesis of phosphatidylcholine. This enzyme catalyzes the biosynthesis of CDPcholine from choline phosphate and CTP. We found that its subcellular localization (mainly in microsomal and cytosolic fractions) was different from that of phosphatidylethanolamine N-methyltransferase (EC 2.1.1.17), the enzyme of the alternative pathway for phosphatidylcholine synthesis. CTP:choline-phosphate cytidylyltransferase showed a Km of 10 mM for CTP and 0.3 mM for choline phosphate and exhibited a random mechanism. CDPcholine, the reaction product, was a competitive inhibitor of choline phosphate and CTP utilization and had a Ki of 0.090 mM. Both particulate and soluble enzymes required Mg2+ and exhibited an optimal pH at about 7. Cytosolic activity was enhanced by addition of unsaturated fatty acids or phospholipids extracted from brain membranes. Such an enhancement was increased with the centrifugation time used for preparing the soluble enzyme. 相似文献
8.
D A Feldman C R Kovac P L Dranginis P A Weinhold 《The Journal of biological chemistry》1978,253(14):4980-4986
The reaction catalyzed by CTP:phosphocholine cytidylyltransferase in the reverse direction, i.e. the formation of CTP and phosphocholine from CDP-choline and pyrophosphate, is slightly faster than the reaction in the forward direction. The reverse reaction is optimal at 2 mM pyrophosphate and 6 mM Mg2+, in both fetal and adult preparations. The apparent substrate Km values for phosphocholine, CDP-choline, and pyrophosphate are similar in the fetal and adult forms of the enzyme. The enzyme activity is separated into two forms by gel filtration. The enzyme from adult lung exists as a high molecular weight species, ranging in size from 5 X 10(6) to 50 X 10(6). The enzyme from fetal lung exists as a 190,000 molecular weight species and is totally dependent upon added anionic phospholipid for activity in both the forward and reverse direction. The addition of phosphatidylglycerol gives maximal activity, while phosphatidylinositol or cardiolipin produce about 60 to 70% of the maximal activity. Enzyme activation is accompanied by an aggregation of the enzyme. A sonicated preparation of phosphatidylglycerol is a more efficient activator than a preparation mixed on a Vortex mixer (KA = 30 micronM) and also converts a larger proportion of enzyme from fetal lung into a high molecular weight species. The enzyme from adult lung can be dissociated into a form in fetal lung. The dissociated species can be converted back to a high molecular weight form in the presence of phosphatidylglycerol. 相似文献
9.
《Phytochemistry》1986,26(1):81-83
Indole-3-acetic (IAA) reduced the activity of CTP:cholinephosphate cytidylyltransferase in pea (Pisum sativum) stems by an average of 45% compared to controls 1 hr after treatment. An enzyme-linked immunosorbent assay (ELISA) was developed to measure the changes in enzyme protein levels after IAA treatment. The levels of cytidylyltransferase protein were found to be reduced significantly but only by 5 %. 相似文献
10.
The purpose of this work is to compare the properties of phosphatidate phosphatase (L-alpha-phosphatidate phosphohydrolase, EC 3.1.3.4) in fetal and adult rat lung and to establish the developmental profile of activity measured under optimal conditions. The maximal pH of 6.0--7.0 and the inhibition by fluoride, Ca2+ and detergents were simialr for both adult and fetal. Phosphatidate phosphohydrolase activity was located in both mitochondria and microsomes. The localizations of marker enzymes indicated that the activity in these subfractions was not a result of cross contaminations. Very low activity was detected in the supernatant fraction and no Mg2+ requirement was demonstrable. The activity in the particulate fraction was about 50% of the adult from 18 day gestation until birth. Following birth, the activity rapidly increased to adult levels. Dipalmitoyl, dioleoyl and diacyl glycerol 3-phosphates are all utilized well as substrates. 1,2-dipalmitoyl-sn-glycerol 3-phosphate was hydrolyzed faster under maximal conditions. The velocity-substrate curves tended to be sigmoidal, particularly when 1,2-dipalmitoyl-sn-glycerol 3-phosphate was the substrate. Estimated apparent Km values of 0.02--0.03 mM were obtained for fetal and adult preparations. 相似文献
11.
12.
The specificity of CTP:phosphocholine cytidylyltransferase from rat liver for phosphorylated bases has been investigated. The apparent Km for phosphocholine was 0.17 mM. As the number of methyl substituents on the phospho-base decreased, the apparent Km increased: 4.0 mM for phosphodimethylethanolamine, 6.9 for phosphomonomethylethanolamine and 68.4 for phosphoethanolamine. The Vmax for the reaction was similar for phosphocholine (12.6 mumol/min per mg protein), phosphomonomethylethanolamine (13.5 mumol/min per mg protein) and phosphoethanolamine (9.2 mumol/min per mg protein). When phosphodimethylethanolamine was the substrate, the Vmax was 3-fold higher (40.3 mumol/min per mg protein). Phosphoethanolamine, phosphomonomethylethanolamine and phosphodimethylethanolamine were competitive inhibitors of the cytidylyltransferase when phosphocholine was used as substrate with Ki values of 18.5 mM, 9.3 mM and 1.5 mM, respectively. The results show that the cytidylyltransferase is highly specific for phosphocholine. 相似文献
13.
Lung cytosolic cholinephosphate cytidylyltransferase is activated by lipids. We examined the lipid activation pattern as a function of development in rabbit lung from 27 days gestation through term (31 days) and in the adult. The enzyme in both the fetal and adult cytosol was dependent on lipids for activity. Extraction of the cytosol with acetone/butanol virtually abolished cytidylyltransferase activity, but the activity could be restored on addition of lipids extracted with chloroform/methanol from additional cytosol. Cytosolic phospholipids from the fetal lung reactivated cytidylyltransferase but both neutral lipids and phospholipids from the adult were required. The lipids had the same effect on cytidylyltransferase activity in delipidated cytosol from either the fetus or adult so the difference in activation pattern was attributable to the lipids rather than the protein. There was a shift from the fetal to the adult lipid activation pattern as development progressed. Further, there was a significant correlation between cytidylyltransferase activities in intact cytosols from developing lung and activities in delipidated cytosol in the presence of lipids from the same animals. Although these data suggest that lipids regulate cytosolic cytidylyltransferase activity in developing lung their physiological significance remains to be established. 相似文献
14.
Chlorpromazine (25 microM) and trifluoperazine (25 microM) inhibited by 5-fold the activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme for phosphatidylcholine biosynthesis, in rat liver cytosol. Addition of saturating amounts of rat liver phospholipid to the enzyme assay rapidly reversed the drug-mediated inhibition. Three-fold or greater concentrations of these drugs were required to produce a 50% inhibition of the microsomal cytidylyltransferase. Incubation of rat hepatocytes with 20 microM trifluoperazine or chlorpromazine did not inhibit phosphatidylcholine biosynthesis. These results provide additional evidence for the hypothesis that the active form of cytidylyltransferase is on the endoplasmic reticulum and the enzyme in cytosol appears to be latent. 相似文献
15.
Glucocorticoid stimulation of choline-phosphate cytidylyltransferase activity in fetal rat lung: receptor-response relationships 总被引:1,自引:0,他引:1
S A Rooney D W Dynia D A Smart A J Chu L D Ingleson C M Wilson I Gross 《Biochimica et biophysica acta》1986,888(2):208-216
A number of previous studies using in vivo and cultured fetal lung models have shown that the activity of choline-phosphate cytidylyltransferase, the enzyme which catalyzes a rate-limiting reaction in de novo phosphatidylcholine synthesis, is increased by glucocorticoids and other hormones which accelerate fetal lung maturation. To examine the mechanism of this glucocorticoid action further, we examined the effect of dexamethasone on cytidylyltransferase activity in cultured fetal rat lung explants and related it to specific dexamethasone binding. Dexamethasone stimulated cytidylyltransferase activity in the homogenate, microsomal and 105,000 X g supernatant fractions. The hormone did not alter the subcellular distribution of the enzyme, however; the bulk of the activity was in the supernatant fraction in both the control and dexamethasone-treated cultures. The dose-response curves for stimulation of cytidylyltransferase activity in the supernatant fraction and specific nuclear binding of dexamethasone were similar and both plateaued at approx. 20 nM. The EC50 for cytidylyltransferase stimulation was 6.6 nM and the Kd for dexamethasone binding was 6.8 nM. The relative potencies of various steroids for stimulating choline-phosphate cytidylyltransferase and for specific nuclear glucocorticoid binding were the same: dexamethasone greater than cortisol = corticosterone = dihydrocorticosterone greater than progesterone. The stimulation by dexamethasone of cytidylyltransferase activity and of choline incorporation into phosphatidylcholine were both abolished by actinomycin D. These data show that the stimulatory effect of dexamethasone on fetal rat lung choline-phosphate cytidylyltransferase activity is largely on the enzyme in the supernatant fraction and does not involve enzyme translocation to the microsomes as has been reported for cytidylyltransferase activation in some other systems. This effect of dexamethasone is a receptor-mediated process dependent on RNA and protein synthesis. 相似文献
16.
The purification and characterization of CTP:phosphorylcholine cytidylyltransferase from rat liver 总被引:3,自引:0,他引:3
We have purified CTP:phosphorylcholine cytidylyltransferase from rat liver cytosol 2180-fold to a specific activity of 12,250 nmol/min/mg of protein. The purified enzyme was stable at -70 degrees C in the presence of Triton X-100 and 0.2 M phosphate. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide electrophoresis. Separation by sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the purified enzyme contained subunits with Mr of 39,000 and 48,000. Gel filtration analysis indicated that the native enzyme was a tetramer containing two 39,000 and two 48,000 subunits. The purified enzyme appeared to bind to Triton X-100 micelles, one molecule of tetramer/micelle. Maximal activity was obtained with 100 microM phosphatidylcholine-oleic acid vesicles (8-10-fold stimulation). Phosphatidylglycerol produced a 4-5-fold increase in activity at 10 microM. The pH optimum and true Km values for CTP and phosphorylcholine were similar to those reported previously for crude preparations of cytidylyltransferase. The overall behavior of cytidylyltransferase during purification and subsequent analysis suggested that it has hydrophobic properties similar to those exhibited by membrane proteins. 相似文献
17.
C H Weber Y S Park S Sanker C Kent M L Ludwig 《Structure (London, England : 1993)》1999,7(9):1113-1124
BACKGROUND: The formation of critical intermediates in the biosynthesis of lipids and complex carbohydrates is carried out by cytidylyltransferases, which utilize CTP to form activated CDP-alcohols or CMP-acid sugars plus inorganic pyrophosphate. Several cytidylyltransferases are related and constitute a conserved family of enzymes. The eukaryotic members of the family are complex enzymes with multiple regulatory regions or repeated catalytic domains, whereas the bacterial enzyme, CTP:glycerol-3-phosphate cytidylyltransferase (GCT), contains only the catalytic domain. Thus, GCT provides an excellent model for the study of catalysis by the eukaryotic cytidylyltransferases. RESULTS: The crystal structure of GCT from Bacillus subtilis has been determined by multiwavelength anomalous diffraction using a mercury derivative and refined to 2.0 A resolution (R(factor) 0.196; R(free) 0.255). GCT is a homodimer; each monomer comprises an alpha/beta fold with a central 3-2-1-4-5 parallel beta sheet. Additional helices and loops extending from the alpha/beta core form a bowl that binds substrates. CTP, bound at each active site of the homodimer, interacts with the conserved (14)HXGH and (113)RTXGISTT motifs. The dimer interface incorporates part of a third motif, (63)RYVDEVI, and includes hydrophobic residues adjoining the HXGH sequence. CONCLUSIONS: Structure superpositions relate GCT to the catalytic domains from class I aminoacyl-tRNA synthetases, and thus expand the tRNA synthetase family of folds to include the catalytic domains of the family of cytidylyltransferases. GCT and aminoacyl-tRNA synthetases catalyze analogous reactions, bind nucleotides in similar U-shaped conformations, and depend on histidines from analogous HXGH motifs for activity. The structural and other similarities support proposals that GCT, like the synthetases, catalyzes nucleotidyl transfer by stabilizing a pentavalent transition state at the alpha-phosphate of CTP. 相似文献
18.
CTP:phosphocholine cytidylyltransferase is thought to be a rate-limiting enzyme in phosphatidylcholine synthesis. This enzyme has not been well studied in intestine. We found that activity was greater in the non-lipid stimulated state (cytosolic form of the enzyme) than any previous tissue investigated (2.7 nM/min per mg protein). On addition of lysophosphatidylethanolamine, the enzyme only increased in activity 2.4-fold which is less than any previously reported tissue on lipid stimulation. As compared to liver, the enzyme was resistant to inhibition by chlorpromazine (gut, 100% activity remaining at 80 microM; 14% in liver). Tetracaine and propranolol were found to be impotent as inhibitors of the intestinal enzyme. Octanol-water partitioning showed that both chlorpromazine and tetracaine were hydrophobic, propranolol was not. pKa studies demonstrated that at the reaction pH, chlorpromazine would be uncharged. Physiologic experiments in which de novo phosphatidylcholine synthesis was either stimulated by bile duct fistulization and triacylglycerol infusion or suppressed by including phosphatidylcholine in a lipid infusion demonstrated that the enzyme (cytosolic enzyme) responded by decreasing Vmax but that the Km remained the same. In sum, these studies suggest that CTP:phosphocholine cytidylyltransferase in intestine is unique as compared to other tissues and that its response to a physiological stimulus is counter to that which would be adaptive. 相似文献
19.
Siqi Tian Jun Ohtsuka Shipeng Wang Koji Nagata Masaru Tanokura Akinori Ohta Hiroyuki Horiuchi Ryouichi Fukuda 《Biochemical and biophysical research communications》2014
CTP:phosphoethanolamine cytidylyltransferase (ECT) is a key enzyme in the CDP-ethanolamine branch of the Kennedy pathway, which is the primary pathway of phosphatidylethanolamine (PE) synthesis in mammalian cells. Here, the enzymatic properties of recombinant human ECT (hECT) were characterized. The catalytic reaction of hECT obeyed Michaelis–Menten kinetics with respect to both CTP and phosphoethanolamine. hECT is composed of two tandem cytidylyltransferase (CT) domains as ECTs of other organisms. The histidines, especially the first histidine, in the CTP-binding motif HxGH in the N-terminal CT domain were critical for its catalytic activity in vitro, while those in the C-terminal CT domain were not. Overexpression of the wild-type hECT and hECT mutants containing amino acid substitutions in the HxGH motif in the C-terminal CT domain suppressed the growth defect of the Saccharomyces cerevisiae mutant of ECT1 encoding ECT in the absence of a PE supply via the decarboxylation of phosphatidylserine, but overexpression of hECT mutants of the N-terminal CT domain did not. These results suggest that the N-terminal CT domain of hECT contributes to its catalytic reaction, but C-terminal CT domain does not. 相似文献
20.
We report CTP:phosphocholine cytidylyltransferase (CT) as another target enzyme of sphingosine actions in addition to the well-characterized protein kinase C. Effects of sphingosine and lysophingolipids were studied on the activity of purified cytidylyltransferase prepared by the method of Weinhold et al. (Weinhold, P. A., Rounsifer, M.E., and Feldman, D.A. (1986) J. Biol. Chem. 261, 5104-5110). The sphingolipids were tested as components of egg phosphatidylcholine (PC) vesicles, 25 mol% sphingosine inhibited the CT activity by about 50%. The inhibition of CT by sphingosine and lysosphingolipids was reversible. Sphingosine was found to be a reversible inhibitor of CT with respect to the activating lipids such as phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and fatty acid:phosphatidylcholine vesicles. Egg PC vesicles containing sphingosine, psychosine (galactosylsphingosine), glucopsychosine (glucosylsphingosine), and lysosphingomyelin (sphingosylphosphorylcholine) suppressed the activation by PC/oleic acid vesicles, whereas the parent sphingolipids did not. Egg PC vesicles containing oleylamine and hexadecyltrimethylamine inhibited CT activity, whereas egg PC-octylamine vesicles did not alter the enzyme activity. This indicates the importance of an amino group and long alkyl chain. LysoPC, a known detergent, did not inhibit the enzyme activity under the same assay conditions in which sphingosine inhibited. These results are the first report of a lipid inhibitor of purified CT. 相似文献