首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C W Lee  J S Waugh  R G Griffin 《Biochemistry》1986,25(13):3737-3742
31P and 2H solid-state NMR studies of dry trehalose (TRE) and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) mixtures are reported. 31P spectra are consistent with a rigid head group above and below the calorimetric phase transition for both dry DPPC and a dry 2:1 TRE/DPPC mixture. In addition, 2H spectra of DPPC labeled at the 7-position of the sn-2 chain (2[7,7-2H2]DPPC) show exchange-narrowed line shapes with a width of 120 kHz over the temperature range 25-75 degrees C. These line shapes can be simulated with a model involving two-site jumps of the deuteron. In contrast, the 2H NMR spectrum of a dry 2:1 TRE/2[7,7-2H2]DPPC mixture above the phase transition (Tc = 46 degrees C) is narrowed by a factor of approximately 4 to a width of 29 kHz. Simulation of this spectrum requires a model involving four-site jumps of the deuteron and is indicative of highly disordered lipid acyl chains similar to those found in the L alpha-phases of hydrated lipids. Thus, TRE/DPPC mixtures above their transition temperatures exist in a new type of liquid crystalline like phase, which we term a lambda-phase. The observation of the dynamic properties of this new phase indicates the mechanism by which anhydrobiotic organisms maintain the integrity of their membranes upon dehydration.  相似文献   

2.
The phase diagram of dipalmitoylphosphatidylcholine (DPPC) and palmitic acid mixtures in excess D2O was studied by 13C-NMR. Phase boundaries were determined from plots of apparent spin-spin relaxation time T2 (for both choline methyl and fatty acid chain carbons) versus temperature. A peritectic transition in the 1-10 mol% region, whose existence has been theoretically inferred from the Gibbs phase rule but which was undetectable by differential thermal analysis (DTA) (S.E. Schullery et al. Biochemistry, 20 (1981) 6818-6824), was located by NMR at 41.6 degrees C. A second, nearby peritectic line at 44 degrees C, which had been shown by DTA to extend from about 3-25 mol% palmitic acid, was seen by NMR only above 10 mol%. The palmitic acid/DPPC complex (2:1), with a sharp melting point at 64 degrees C, reported in earlier studies, was also seen by NMR. A phase diagram including both NMR and DTA results is presented. Important general conclusions from this study are: (i) NMR and scanning thermal analysis are complementary techniques for phase studies; each can see transitions that are invisible to the other. (ii) The case for the applicability of the Gibbs phase rule to lipid bilayer systems has been strengthened by the observance of two predicted, close-spaced boundaries. (iii) Low concentrations of fatty acids and related molecules can not be assumed to disperse as simple ideal solutes in the bilayer matrix.  相似文献   

3.
The methyl-d(3) amide derivative of the polyene antibiotic amphotericin B was synthesized, assayed for biological activity, incorporated into mechanically aligned bilayers of dipalmitoylphosphatidylcholine (DPPC), and examined by deuterium and phosphorus NMR. The amide derivative has a lesser, but qualitatively similar, biological activity relative to amphotericin B. Incorporation of the amide derivative and ergosterol into aligned DPPC bilayers resulted in a single, stable bilayer phase, as shown by phosphorus NMR of the DPPC headgroups. Deuterium NMR spectra revealed one major (2)H quadrupolar splitting and one major (2)H-(1)H dipolar splitting in the liquid-crystalline phase, consistent with a high degree of alignment and a single, averaged physical state for amphotericin B methyl-d(3) amide in the bilayer. Variations of the quadrupolar and dipolar splittings as a function of macroscopic sample orientation and temperature indicated that the amide derivative undergoes fast rotation about a motional axis that is parallel to the bilayer normal.  相似文献   

4.
Sucrose polyester (SPE), in the form of sucrose octaesters and sucrose hexaesters of palmitic (16:0), stearic (18:0), oleic (18:1cis), and linoleic (18:2cis) acids, have many uses. Applications include: a non-caloric fat substitute, detoxification agent, and oral contrast agent for human abdominal (MRI) magnetic resonance imaging. However, it has been shown that the ingestion of SPE was shown to generate a depletion of physiologically important lipidic vitamins and other lipophilic molecules. In order to better understand, at the molecular level, the type of interaction between SPE and lipid membrane, we have, first synthesized different type of labelled and non-labelled SPEs. Secondly, we have studied the effect of SPEs on multilamellar dispersions of dielaidoylphosphatidylethanolamine (DEPE) and dipalmitoylphosphocholine (DPPC) as a function of temperature, SPE composition and concentration. The effects of SPEs were studied by differential scanning calorimetry (DSC), X-ray diffraction, 2H and 31P NMR spectroscopy. At low concentration (< 1 mol%) all of the SPEs lowered the bilayer to the inverted hexagonal phase transition temperature of DEPE and induced the formation of a cubic phase in a composition dependent manner. At the same low concentration, SPEs in DPPC induce the formation of a non-bilayer phase as seen by 31P NMR. Order parameter measurements of DPPC-d62/SPE mixtures show that the SPE effect on the DPPC monolayer thickness is dependent on the SPE, concentration, chains length and saturation level. At higher concentration (> or = 10 mol%) SPE are very potent DEPE bilayer to HII phase transition promoters, although at that concentration the SPE have lost the ability to form cubic phases. SPEs have profound effects on the phase behaviour of model membrane systems, and may be important to consider when developing current and potential industrial and medical applications.  相似文献   

5.
J A Hamilton 《Biochemistry》1989,28(6):2514-2520
Interactions of carbonyl 13C-enriched triacylglycerols (TG) with phospholipid bilayers [egg phosphatidylcholine (PC), dipalmitoylphosphatidylcholine (DPPC), and an ether-linked phosphatidylcholine] were studied by 13C NMR spectroscopy. Up to 3 mol % triolein (TO) or tripalmitin (TP) was incorporated into DPPC vesicles by cosonication of the TG and DPPC at approximately 50 degrees C. NMR studies were carried out in a temperature range (30-50 degrees C) in which pure TO is a liquid whereas pure TP is a solid. In spectra of DPPC vesicles with TG at 40-50 degrees C, both TO and TP had narrow carbonyl resonances, indicative of rapid motions, and chemical shifts indicative of H bonding of the TG carbonyls with solvent (H2O) at the aqueous interfaces of the vesicle bilayer. Below the phase transition temperature of the DPPC/TG vesicles (approximately 36 degrees C), most phospholipid peaks broadened markedly. In DPPC vesicles with TP, the TP carbonyl peaks broadened beyond detection below the transition, whereas in vesicles with TO, the TO carbonyl peaks showed little change in line width or chemical shift and no change in the integrated intensity. Thus, in the gel phase, TP solidified with DPPC, whereas TO was fluid and remained oriented at the aqueous interfaces. Egg PC vesicles incorporated up to 2 mol % TP at 35 degrees C; the TP carbonyl peaks had line-width and chemical shift values similar to those for TP (or TO) in liquid-crystalline DPPC. TO incorporated into ether-linked PC had properties very similar to TO in ester-linked PC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
E J Dufourc  I C Smith  J Dufourcq 《Biochemistry》1986,25(21):6448-6455
Solid-state deuterium and phosphorus-31 nuclear magnetic resonance (2H and 31P NMR) studies of deuterium-enriched phosphatidylcholine [( 3',3'-2H2]DPPC, [sn-2-2H31]DPPC) and ditetradecylphosphatidylglycerol (DMPG-diether), as water dispersions, were undertaken to investigate the action of melittin on zwitterionic and negatively charged membrane phospholipids. When the lipid-to-protein ratio (Ri) is greater than or equal to 20, the 2H and 31P NMR spectral features indicate that the system is constituted by large bilayer structures of several thousand angstrom curvature radius, at T greater than Tc (Tc, temperature of "gel-to-liquid crystal" phase transition of pure lipid dispersions). At T approximately Tc, a detailed analysis of the lipid chain ordering shows that melittin induces a slight disordering of the "plateau" positions concomitantly with a substantial ordering of positions near the bilayer center. At T much greater than Tc, an apparent general chain disordering is observed. These findings suggest that melittin is in contact with the acyl chain segments and that its position within the bilayer may depend on the temperature. On a cooling down below Tc, for Ri greater than 20, two-phase spectra are observed, i.e., narrow single resonances superimposed on gel-type phosphorus and deuterium powder patterns. These narrow resonances are characteristic of small structures (vesicles, micelles, ... of a few hundred angstrom curvature radius) undergoing fast isotropic reorientation, which averages to zero both the quadrupolar and chemical shift anisotropy interactions. On an increase of the temperature above Tc, the NMR spectra indicate that the system returns reversibly to large bilayer structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effect of insulin on the bilayer properties of dimyristoylphosphatidylcholine liposomes at the gel and the liquid crystalline state was measured by differential scanning calorimetry and absorbance at 450 nm. It is found that insulin promotes a decrease in the enthalpy of the gel-liquid crystalline transition without displacing the transition temperature. Under these conditions the lytic action of monomyristoylphospatidylcholine is enhanced, decreasing the critical lytic concentrations to values comparable to the bilayer at the gel state. The effect of the lysoderivate on liposomes in contact with increasing concentrations of insulin promotes a reorganization of the lipids into smaller particles as inferred from fluorescence dequenching, turbidity and exclusion chromatography assay. It is concluded that the action of lysoderivates can be enhanced, at temperatures above the transition temperature, by proteins that without spanning the lipid bilayers can perturb the bilayer interface.  相似文献   

8.
Physicochemical studies on the binding of etomidate, a fast acting anaesthetic, with lipid bilayers have been carried out. ESR spin labeling studies indicate that the gel to liquid crystalline phase transition of dipalmitoyl phosphatidyl choline (DPPC) vesicles retains its cooperative nature on incorporation of the anaesthetic. For a 5:1 lipid to drug molar ratio, the phase transition occurs at an unusually lower temperature than those observed with other drug-DPPC systems. Results of 13C NMR and 1H NOE experiments suggest that the drug molecules reside in the close proximity of the terminal of hydrocarbon chains of the lipid molecules. 31P NMR and Electron Microscopic experiments indicate that the presence of etomidate alters the normal lamellar structure of DPPC vesicles into hexagonal (HII) type. Based on these observations, a model for drug-lipid binding has been proposed.  相似文献   

9.
Gangliosides have been shown to function as cell surface receptors, as well as participating in cell growth, differentiation, and transformation. In spite of their multiple biological functions, relatively little is known about their structure and physical properties in membrane systems. The thermotropic and structural properties of ganglioside GM1 alone and in a binary system with 1,2-dipalmitoyl phosphatidylcholine (DPPC) have been investigated by differential scanning calorimetry (DSC) and x-ray diffraction. By DSC hydrated GM1 undergoes a broad endothermic transition TM = 26 degrees C (delta H = 1.7 kcal/mol GM1). X-ray diffraction below (-2 degrees C) and above (51 degrees C) this transition indicates a micellar structure with changes occurring only in the wide angle region of the diffraction pattern (relatively sharp reflection at 1/4.12 A-1 at -2 degrees C; more diffuse reflection at 1/4.41 A-1 at 51 degrees C). In hydrated binary mixtures with DPPC, incorporation of GM1 (0-30 mol%; zone 1) decreases the enthalpy of the DPPC pretransition at low molar compositions while increasing the TM of both the pre- and main transitions (limiting values, 39 and 44 degrees C, respectively). X-ray diffraction studies indicate the presence of a single bilayer gel phase in zone 1 that can undergo chain melting to an L alpha bilayer phase. A detailed hydration study of GM1 (5.7 mol %)/DPPC indicated a conversion of the DPPC bilayer gel phase to an infinite swelling system in zone 1 due to the presence of the negatively charged sialic acid moiety of GM1. At 30-61 mol % GM1 (zone 2), two calorimetric transitions are observed at 44 and 47 degrees C, suggesting the presence of two phases. The lower transition reflects the bilayer gel --> L alpha transition (zone 1), whereas the upper transition appears to be a consequence of the formation of a nonbilayer, micellar or hexagonal phase, although the structure of this phase has not been defined by x-ray diffraction. At > 61 mol % GM1 (zone 3) the calorimetric and phase behavior is dominated by the micelle-forming properties of GM1; the presence of mixed GM1/DPPC micellar phases is predicted.  相似文献   

10.
Two key commonly used cannabinergic agonists, CP55940 and WIN55212-2, are investigated for their effects on the lipid membrane bilayer using (2)H solid state NMR, and the results are compared with our earlier work with delta-9-tetrahydrocannabinol (Δ(9)-THC). To study the effects of these ligands we used hydrated bilayers of dipalmitoylphosphatidylcholine (DPPC) deuterated at the 2' and 16' positions of both acyl chains with deuterium atoms serving as probes for the dynamic and phase changes at the membrane interface and at the bilayer center respectively. All three cannabinergic ligands lower the phospholipid membrane phase transition temperature, increase the lipid sn-2 chain order parameter at the membrane interface and decrease the order at the center of the bilayer. Our studies show that the cannabinoid ligands induce lateral phase separation in the lipid membrane at physiological temperatures. During the lipid membrane phase transition, the cooperative dynamic process whereby the C-(2)H segments at the interface and center of the bilayer spontaneously reach the fast exchange regime ((2)H NMR timescale) is distinctively modulated by the two cannabinoids. Specifically, CP55940 is slightly more efficient at inducing liquid crystalline-type (2)H NMR spectral features at the membrane interface compared to WIN55212-2. In contrast, WIN55212-2 has a far superior ability to induce liquid crystalline-type spectral features at the center of the bilayer, and it increases the order parameter of the sn-1 chain in addition to the sn-2 chain of the lipids. These observations suggest the cannabinoid ligands may influence lipid membrane domain formations and there may be contributions to their cannabinergic activities through lipid membrane microdomain related mechanisms. Our work demonstrates that experimental design strategies utilizing specifically deuterium labeled lipids yield more detailed insights concerning the properties of lipid bilayers.  相似文献   

11.
Fluorescein-PE is a fluorescence probe that is used as a membrane label or a sensor of surface associated processes. Fluorescein-PE fluorescence intensity depends not only on bulk pH, but also on the local electrostatic potential, which affects the local membrane interface proton concentration. The pH sensitivity and hydrophilic character of the fluorescein moiety was used to detect conformational changes at the lipid bilayer surface. When located in the dipalmitoylphosphatidylcholine (DPPC) bilayer, probe fluorescence depends on conformational changes that occur during phase transitions. Relative fluorescence intensity changes more at pretransition than at the main phase transition temperature, indicating that interface conformation affects the condition in the vicinity of the membrane. Local electrostatic potential depends on surface charge density, the local dielectric constant, salt concentration and water organisation. Initial increase in fluorescence intensity at temperatures preceding that of pretransition can be explained by the decreased value of the dielectric constant in the lipid polar headgroups region related in turn to decreased water organisation within the membrane interface. The abrupt decrease in fluorescence intensity at temperatures between 25 degrees C and 35 degrees C (DPPC pretransition) is likely to be caused by an increased value of the electrostatic potential, induced by an elevated value of the dielectric constant within the phosphate group region. Further increase in the fluorescence intensity at temperatures above that of the gel-liquid phase transition correlates with the calculated decreased surface electrostatic potential. Above the main phase transition temperature, fluorescence intensity increase at a salt concentration of 140 mM is larger than with 14 mM. This results from a sharp decline of the electrostatic potential induced by the phosphocholine dipole as a function of distance from the membrane surface.  相似文献   

12.
1. The polymorphic phase behaviour of aqueous dispersions of phosphatidylethanolamines isolated from human erythrocytes, hen egg yolk and Escherichia coli have been investigated employing 31P NMR techniques. All species exhibit well defined, reversible bilayer to hexagonal (H11) phase transitions as the temperature is increased. The temperatures at which these transition take place (10, 25--30 and 55--60 degrees C for erythrocyte, egg yolk and E. coli phosphatidylethanolamine, respectively) are sensitive to the fatty acid composition, occurring at a temperature up to 10 degrees C above the high temperature end of the hydrocarbon phase transition as detected by differential scanning calorimetry. In some cases the bilayer to hexagonal (H11) transitions may also be detected employing calorimetric techniques. 2. The addition of equimolar concentrations of cholesterol to these naturally occurring phosphatidylethanolamines does not dramatically affect the bilayer-hexagonal (H11) transition temperature, producing changes of up to 10 degrees C. 3. 18 : 1t/18 : 1t phosphatidylethanolamine undergoes the bilayer to hexagonal (H11) phase transition as the temperature is increased through the interval 50--55 degrees C. Alternatively, hydrated 12 : 0/12 : 0 phosphatidylethanolamine remains in the bilayer phase at temperatures up to 90 degrees C (50 degrees C above the hydrocarbon phase transition temperature). 4. The presence of 100 mM NaCl or 10 mM CaCl2 in aqueous dispersions of egg yolk phosphatidylethanolamine does not alter the temperature-dependent polymorphic phase behaviour significantly. However, at 40 degrees C, increasing the p2H above 8.0 results in progressive inhibition of the hexagonal (H11) phase and the appearance of a phase possibly of cubic structure at p2H 9.0. At p2H 10.0 the bilayer phase is preferred. 5. It is suggested that in biomembranes containing phosphatidylethanolamine as a majority species (such as that of E. coli) the fatty acid composition may primarily reflect the need to maintain bilayer structure. Alternatively, it is pointed out that in mammalian membranes such as that of the erythrocyte, phosphatidylethanolamine tends to destabilize bilayer structure. The resulting possibility that transitory non-bilayer lipid configurations may occur may be directly related to many important properties of biological membranes.  相似文献   

13.
F S Hing  P R Maulik  G G Shipley 《Biochemistry》1991,30(37):9007-9015
The ether-linked phospholipid 1,2-dihexadecylphosphatidylethanolamine (DHPE) was studied as a function of hydration and in fully hydrated mixed phospholipid systems with its ester-linked analogue 1,2-dipalmitoylphosphatidylethanolamine (DPPE). A combination of differential scanning calorimetry (DSC) and X-ray diffraction was used to examine the phase behavior of these lipids. By DSC, from 0 to 10 wt % H2O, DHPE displayed a single reversible transition that decreased from 95.2 to 78.8 degrees C and which was shown by X-ray diffraction data to be a direct bilayer gel to inverted hexagonal conversion, L beta----HII. Above 15% H2O, two reversible transitions were observed which stabilized at 67.1 and 92.3 degrees C above 19% H2O. X-ray diffraction data of fully hydrated DHPE confirmed the lower temperature transition to be a bilayer gel to bilayer liquid-crystalline (L beta----L alpha) phase transition and the higher temperature transition to be a bilayer liquid-crystalline to inverted hexagonal (L alpha----HII) phase transition. The lamellar repeat distance of gel-state DHPE increased as a function of hydration to a limiting value of 62.5 A at 19% H2O (8.6 mol of water/mol of DHPE), which corresponds to the hydration at which the transition temperatures are seen to stabilize by DSC. Electron density profiles of DHPE, in addition to calculations of the lipid layer thickness, confirmed that DHPE in the gel state forms a noninterdigitated bilayer at all hydrations. Fully hydrated mixed phospholipid systems of DHPE and DPPE exhibited two reversible transitions by DSC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Vesicles containing ternary mixtures of diphytanoylphosphatidylcholine, dipalmitoylphosphatidylcholine (DPPC), and cholesterol produce coexisting liquid phases over an unusually large range of temperature and composition. Liquid domains persist well above the DPPC chain melting temperature (41 degrees C), resulting in a closed-loop miscibility gap bounded by two critical points at fixed temperature. Quantitative tie-lines are determined directly from 2H NMR spectra using a novel analysis, and are found to connect a liquid-disordered phase rich in diphytanoyl PC with a liquid-ordered phase rich in DPPC. The direction of the tie-lines implies that binary DPPC/cholesterol mixtures are in one uniform phase above 41 degrees C. All 2H NMR results for tie-lines are verified by independent fluorescence microscopy results.  相似文献   

15.
The influence of the addition of Ca2+ on the phase behaviour of vesicles, composed of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidic acid (DMPA) in a ratio of 4 to 1, has been investigated by means of turbidity measurements. As expected one single phase transition for the mixed phospholipids was observed in the absence of Ca2+. Passing through the temperature range of this transition after the addition of Ca2+, conditions appeared to favor fusion of the vesicles. A possible reason for this is that during the transition Ca2+ may permeate through the vesicle membranes and gain access to the inside DMPA binding sites. Therefore it is not unambiguously possible to determine phase transition temperatures from the turbidity changes that occur under these conditions. However, when within the temperature range of the phase transition of the mixed phospholipids the influence of Ca2+ addition to the vesicles was recorded isothermally, at each temperature separately, the final plot of turbidity versus temperature turned out to be far less confused by fusion events and adopted the form of two separate phase transitions. The temperatures at which these two transitions occur closely resemble the phase transition temperatures that may be observed in the absence of Ca2+ for DMPA and DPPC alone, 39 degrees C and 43 degrees C respectively. The results of this study suggest that when Ca2+ has only access to the outside of the vesicle membranes it may segregate the neutral and the acidic phospholipids into separate domains, both domains adopting their proper phase condition at the actual temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of the anesthetic steroid alphaxalone and its inactive analog delta 16-alphaxalone on model phospholipid membranes were studied using 13C and 2H solid-state nuclear magnetic resonance spectroscopy. Aqueous multilamellar dispersions of dipalmitoylphosphatidylcholine (DPPC) with specific 13C and 2H labels as endogenous probes at the carbonyl and the C-7 methylene groups, respectively, of the sn-2 chain were used to study the conformational and dynamical properties of the bilayer as a function of temperature. There were no significant changes between the 13C and 2H spectra of the DPPC preparation containing the inactive steroid and that of DPPC with no drug. However, the physiologically active steroid produces significant spectral 2H and 13C changes. These changes include a reduction of the main phase transition temperature and a broadening of that transition. Alphaxalone also increases the relative number of gauche conformers in the liquid-crystalline phase of DPPC and increases the rate of axial diffusion in both the gel and liquid-crystalline phase. The thermotropic properties of the above preparations, as monitored by differential scanning calorimetry, were congruent with the spectroscopic data.  相似文献   

17.
By employing diphenylhexatriene steady-state fluorescence anisotropy, pyrenedecanoic acid excimer formation, and high sensitivity scanning calorimetry we have demonstrated that the liposomes containing phosphatidylethanolamine (PE) and various mole fractions of ganglioside GD1a had a gel-liquid crystalline phase transition between 15 and 25 degrees C. Calorimetric measurements indicated that these phase transitions were broad and centered between 17 and 21 degrees C. The enthalpy change of the transition was linearly dependent on the ganglioside concentration up to 10.0 mol% and plateaued between 11.4-16.2 mol%. The high enthalpy change (37 kcal/mol of GD1a added into the PE bilayer) indicates the existence of PE-GD1a complex structure in the liposomal membrane. It is proposed that semi-fluid domains containing six PE and one ganglioside molecule are present in the PE-GD1a membranes at temperatures above gel-liquid crystalline phase transition. The Sendai virus induced leakage of PE-GD1a liposomes has been investigated by using an entrapped, self-quenching fluorescent dye, calcein. The leakage rate was dependent on the mole fraction of ganglioside GD1a and was maximal at 6.3 mol%. Arrhenius plots of the leakage rates showed breaks in the 20-25 degrees C temperature range, which correspond to the gel-liquid crystalline phase transition of the target liposomes. These data suggest that the rate of Sendai virus-induced leakage can be regulated via fluidity modulation by changing the PE to GD1a ratio at constant temperatures.  相似文献   

18.
Phospholipid bilayer interaction of olanzapine (OLZ), a thienobenzodiazepine derivative and an antipsychotic agent, has been studied with (13)C and (31)P solid-state NMR. A dipalmitoyl phosphatidylcholine (60%)/1-palmitoyl-2-oleoyl phosphatidylserine (40%) bilayer (DPPC(60%)/POPS(40%)) with 50 wt.% H(2)O, with and without 10 mol% OLZ have been investigated. The results reveal that both the serine and the choline head groups are affected by OLZ interaction with the bilayer. The OLZ interaction with the serine and the choline head groups appears to be caused by electrostatic attraction to the serine head group carboxyl and repulsion of the choline head group positively charged nitrogen. (31)P MAS NMR experiments show the appearance of two new (31)P resonances both for the PS and the PC phosphorous in the presence of OLZ. Static (31)P NMR spectra demonstrate a decrease in chemical shift anisotropy (CSA) of the OLZ containing bilayer when in the liquid-crystalline phase and an increase in CSA when in the gel state.  相似文献   

19.
Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH2 stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications.  相似文献   

20.
The interactions of carbon-13 enriched butanol with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were studied using C-13 nuclear magnetic resonance. It was found that above the gel to liquid crystal phase transition the resonance from the butanol could be resolved into two signals with similar chemical shifts but different T1 values and line widths. In contrast, only one narrow resonance was observed for ethanol, which has considerably less solubility in the lipids than butanol. Thermodynamic analyses of the effects of butanol on the phase transition temperature predict much greater solubility or butanol when the lipid is above the phase transition temperature than when it is below. It was concluded that the two butanol resonances represent two slowly exchanging populations, the free butanol in the aqueous phase and butanol dissolved in the liquid crystalline region of the lipid. No bound butanol was detected below the gel to liquid crystal phase transition. Relaxation studies were performed on the resonance of the bound butanol in DPPC and DMPC, including measurements of T1, line width, and nuclear Overhauser enhancement. Theoretical analysis of the relaxation parameters indicates that the lipid-bound alcohol has very high mobility within the fluid lipid bilayer. The data are consistent with butanol being present at the aqueous boundary or head group region of the lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号