首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Practice makes perfect, but the neural substrates of trial-to-trial learning in motor tasks remain unclear. There is some evidence that the basal ganglia process feedback-related information to modify learning in essentially cognitive tasks , but the evidence that these key motor structures are involved in offline feedback-related improvement of performance in motor tasks is paradoxically limited. Lesion studies in adult zebra finches suggest that the avian basal ganglia are involved in the transmission or production of an error signal during song . However, patients with Huntington's disease, in which there is prominent basal ganglia dysfunction, are not impaired in error-dependent modulation of future trial performance . By directly recording from the subthalamic nucleus in patients with Parkinson's disease, we demonstrate that this nucleus processes error in trial performance at short latency. Local evoked activity is greatest in response to smallest errors and influences the programming of subsequent movements. Accordingly, motor parameters are least likely to change after the greatest evoked responses so that accurately performed trials tend to precede other accurate trials. This relationship is disrupted by electrical stimulation of the nucleus at high frequency. Thus, the human subthalamic nucleus is involved in feedback-based learning.  相似文献   

2.
A concept in Parkinson's disease postulates that motor cortex may pattern abnormal rhythmic activities in the basal ganglia, underlying the genesis of observed motor symptoms. We conducted a preclinical study of electrical interference in the primary motor cortex using a chronic MPTP primate model in which dopamine depletion was progressive and regularly documented using 18F-DOPA positron tomography. High-frequency motor cortex stimulation significantly reduced akinesia and bradykinesia. This behavioral benefit was associated with an increased metabolic activity in the supplementary motor area as assessed with 18-F-deoxyglucose PET, a normalization of mean firing rate in the internal globus pallidus (GPi) and the subthalamic nucleus (STN), and a reduction of synchronized oscillatory neuronal activities in these two structures. Motor cortex stimulation is a simple and safe procedure to modulate subthalamo-pallido-cortical loop and alleviate parkinsonian symptoms without requiring deep brain stereotactic surgery.  相似文献   

3.
Advances in research on globus pallidus (GP) suggest that this 'long thought to be' relay in the 'indirect pathway' plays a unique and critical role in basal ganglia function. The traditional idea of parallel processing within the basal ganglia is also challenged by recent findings. It is now clear that axons of GP neurons form large, perisomatic baskets around target neurons in all major basal ganglia nuclei, thereby exerting a profound influence on the output of the entire basal ganglia. GP neurons are autonomously active both in vivo and in vitro. It is believed that temporal information carried along the corticostriatopallidal pathway is critical for proper motor execution. The importance of appropriately controlled discharge of GP neurons is highlighted by psychomotor disorders such as Parkinson's disease, in which alterations in the pattern and synchrony of discharge in GP neurons are thought to contribute to motor symptoms. Several lines of evidence suggest that the aberrant activity of GP neurons following dopamine depletion is caused by alteration in the synaptic input from both striatum and subthalamic nucleus. In normal subjects, the capability of striatal input in translating cortical input into precisely timed responses in GP neurons is mediated by (1) the expression of postsynaptic GABA(A) receptor composed of subunits with fast kinetic properties; (2) an effective GABA reuptake system in terminating the action of synaptically released GABA, and (3) the existence of dendritic HCN channels that actively abbreviate the time course of the inhibitory postsynaptic potentials and reset rhythmic discharge. Despite the rapid pace in uncovering the elements that shape the activity along the striatopallidosubthalamic pathway, the origin of rhythmic, synchronized bursting of GP neurons seen in parkinsonism has not been fully established experimentally. Further elucidation of the factors that control the information transfer in the striatopallidal synapses is thus critical to our understanding of basal ganglia function and establishing treatment for Parkinson's disease and other basal ganglia disorders.  相似文献   

4.
Deep brain stimulation at high frequency was first used in 1997 to replace thalamotomy in treating the characteristic tremor of Parkinson's disease, and has subsequently been applied to the pallidum and the subthalamic nucleus. The subthalamic nucleus is a key node in the functional control of motor activity in the basal ganglia. Its inhibition suppresses symptoms in animal models of Parkinson's disease, and high frequency chronic stimulation does the same in human patients. Acute and long-term results after deep brain stimulation show a dramatic and stable improvement of a patient's clinical condition, which mimics the effects of levodopa treatment. The mechanism of action may involve a functional disruption of the abnormal neural messages associated with the disease. Long-term changes, neural plasticity and neural protection might be induced in the network. Similar effects of stimulation and lesioning have led to the extension of this technique for other targets and diseases.  相似文献   

5.
Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz), high gamma (~ 80 Hz) and high frequency (HFO, ~ 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of connectivity among the structures analyzed.  相似文献   

6.
In Parkinson's disease, nigrostriatal denervation leads to an overactivity of the subthalamic nucleus and its target areas, which is responsible of the clinical manifestations of the disease. Because the subthalamic nucleus uses glutamate as neurotransmitter and is innervated by glutamatergic fibers, pharmacological blockade of glutamate transmission might be expected to restore the cascade of neurochemical changes induced by a dopaminergic denervation within the basal ganglia. To test this hypothesis, two types of glutamate antagonists, the NMDA receptor antagonist MK-801 and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist LY293558, were administered systemically, either alone or in combination with L-DOPA, in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal dopamine pathway. The effect of treatment was assessed neurochemically by analyzing at the cellular level the functional activity of basal ganglia output structures and the subthalamic nucleus using the expression levels of the mRNAs coding for glutamic acid decarboxylase and cytochrome oxidase, respectively, as molecular markers of neuronal activity. The present study shows that treatment with glutamate antagonists, and particularly with AMPA antagonists, alone or in combination with L-DOPA, reverses the overactivity of the subthalamic nucleus and its target areas induced by nigrostriatal denervation. These results furnish the neurochemical basis for the potential use of glutamate antagonists as therapeutic agents in Parkinson's disease.  相似文献   

7.
We learn new motor tasks by trial and error, repeating what works best and avoiding past mistakes. To repeat what works best we must register a satisfactory outcome, and in a study [1] we showed the existence of an evoked activity in the basal ganglia that correlates with accuracy of task performance and is associated with reiteration of successful motor parameters in subsequent movements. Here we report evidence that the signaling of positive trial outcome relies on dopaminergic input to the basal ganglia, by recording from the subthalamic nucleus (STN) in patients with nigrostriatal denervation due to Parkinson's Disease (PD) who have undergone functional neurosurgery. Correlations between subthalamic evoked activities and trial accuracy were weak and behavioral performance remained poor while patients were untreated; however, both improved after the dopamine prodrug levodopa was re-introduced. The results suggest that the midbrain dopaminergic system may be important, not only in signaling explicit positive outcomes or rewards in tasks requiring choices between options [2,3], but also in trial-to-trial learning and in reinforcing the selection of optimal parameters in more automatic motor control.  相似文献   

8.
Nigrostriatal dopaminergic denervation is associated with complex changes in the functional and neurochemical anatomy of the basal ganglia. The excitatory neurotransmitter glutamate mediates neural signaling at crucial points of this circuitry, and glutamate receptors are differentially distributed in the basal ganglia. Available evidence suggests that the glutamatergic corticostriatal and subthalamofugal pathways become overactive after nigrostriatal dopamine depletion. In this study, we have analyzed the regulation of the GluR1 subunit of the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in the basal ganglia of primates following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopamine denervation. The dopamine denervation resulted in distinct alterations in GluR1 distribution: (1) GluR1 protein expression was markedly increased in caudate and putamen, and this was most pronounced in the striosomes; (2) GluR1 protein was altered minimally in subthalamic nucleus; (3) expression of GluR1 was down-regulated in the globus pallidus by 63% and in the substantia nigra by 57%. The down-regulation of GluR1 expression in the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata, may be a compensation for the overactive glutamatergic input from subthalamic nucleus, which arises after striatal dopamine denervation. Our results indicate that the glutamatergic system undergoes regulatory changes in response to altered basal ganglia activity in a primate model of Parkinson's disease. Targeted manipulation of the glutamatergic system may be a viable approach to the symptomatic treatment of Parkinson's disease.  相似文献   

9.
The subthalamic nucleus (STN) and external globus pallidus (GP) form a recurrent excitatory-inhibitory interaction within the basal ganglia. Through a computational model of these interactions we show that, under the influence of appropriate external input, the two nuclei can be switched between states of high and low activity or can generate oscillations consisting of bursts of high-frequency activity repeated at a low rate. It is further demonstrated from the model that the generation of the repetitive bursting behaviour is favoured by increased inhibition of the GP, which is a condition indicated in Parkinson's disease. Paradoxically, increased striatal inhibition of the GP is predicted to cause an increase rather than a decrease in its mean firing rate. These behaviours, arising from a biologically inspired computational model of the STN-GP interaction, have important consequences for basal ganglia function and dysfunction.  相似文献   

10.
Inactivation of the subthalamic nucleus (STN) or the internal segment of the pallidum (GPi)/entopeduncular nucleus (EP) by deep brain stimulation or lesioning alleviates clinical manifestations of Parkinson's disease (PD) as well as reducing the side-effects of levodopa treatment. However, the effects of STN or entopeduncular nucleus (EP) lesion on levodopa-related motor fluctuations and on neurochemical changes induced by levodopa remain largely unknown. The effects of such lesions on levodopa-induced motor alterations were studied in 6-hydroxydopamine (6-OHDA)-lesioned rats and were assessed neurochemically by analyzing the functional activity of the basal ganglia nuclei, using the expression levels of the mRNAs coding for glutamic acid decarboxylase and cytochrome oxidase as molecular markers of neuronal activity. At the striatal level, preproenkephalin (PPE) mRNA levels were analyzed. We found in 6-OHDA-lesioned rats that a unilateral STN or EP lesion ipsilateral to the 6-OHDA lesion had no effect on either the shortening in the duration of the levodopa-induced rotational response or the levodopa-induced biochemical changes in the basal ganglia nuclei. In contrast, overexpression of PPE mRNA due to levodopa treatment was reversed by the STN or EP lesion. Our study thus shows that lesion of the EP or STN may counteract some of the neurochemical changes induced by levodopa treatment within the striatum.  相似文献   

11.
Low frequency rest tremor is one of the cardinal signs of Parkinson's disease and some of its animal models. Current physiological studies and models of the basal ganglia differ as to which aspects of neuronal activity are crucial to the pathophysiology of Parkinson's disease. There is evidence that neural oscillations and synchronization play a central role in the generation of the disease. However, parkinsonian tremor is not strictly correlated with the synchronous oscillations in the basal ganglia networks. Rather, abnormal basal ganglia output enforces abnormal thalamo-cortical processing leading to akinesia, the main negative symptom of Parkinson's disease. Parkinsonian tremor has probably evolved as a downstream compensatory mechanism.  相似文献   

12.
 Anatomical, neurophysiological, and neurochemical evidence supports the notion of parallel basal ganglia–thalamocortical motor systems. We developed a neural network model for the functioning of these systems during normal and parkinsonian movement. Parkinson’s disease (PD), which results predominantly from nigrostriatal pathway damage, is used as a window to examine basal ganglia function. Simulations of dopamine depletion produce motor impairments consistent with motor deficits observed in PD that suggest the basal ganglia play a role in motor initiation and execution, and sequencing of motor programs. Stereotaxic lesions in the model’s globus pallidus and subthalamic nucleus suggest that these lesions, although reducing some PD symptoms, may constrain the repertoire of available movements. It is proposed that paradoxical observations of basal ganglia responses reported in the literature may result from regional functional neuronal specialization, and the non-uniform distributions of neurochemicals in the basal ganglia. It is hypothesized that dopamine depletion produces smaller-than-normal pallidothalamic gating signals that prevent rescalability of these signals to control variable movement speed, and that in PD can produce smaller-than-normal movement amplitudes. Received: 1 September 1994/Accepted in revised form: 16 May 1995  相似文献   

13.
The endogenous opioid system in neurological disorders of the basal ganglia   总被引:2,自引:0,他引:2  
R Sandyk 《Life sciences》1985,37(18):1655-1663
The endogenous opioid peptides have for some time been implicated in the regulation of motor behavior in animals. Recently, however, there is increased evidence to suggest a role for these peptides in the control of human motor functions as well as in the pathophysiology of abnormal movement disorders. Degeneration of opioid peptide-containing neurons in the basal ganglia has been demonstrated in Parkinson's disease and Huntington's chorea, but the clinical significance of these findings is largely unknown. On the other hand, there is evidence that excessive opioid activity may be important in the pathophysiology of some movement disorders such as tardive dyskinesia, progressive supra-nuclear palsy, and a subgroup of Tourette's patients. These findings indicate that diseases of the basal ganglia are possibly associated with alterations in opioid peptide activity, and that these alterations may be useful in designing experimental therapeutic strategies in these conditions.  相似文献   

14.
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.  相似文献   

15.
Converging data suggest that abnormal synchronised oscillatory activity in the basal ganglia may contribute to bradykinesia in patients with Parkinson's disease. This synchrony preferentially occurs over 10-30 Hz, the so-called beta band. Correlative evidence has been supplemented by experiments in which direct stimulation of the basal ganglia in the beta band slows movement. Yet questions remain regarding the small scale of the latter effects and whether synchrony is an early or even obligatory feature of parkinsonism. Nevertheless, the principle that abnormally synchronised activity in the beta band can disrupt the function finds a precedent in the syndrome of cortical myoclonus. Here, pathologically synchronised discharges of pyramidal neurons are transmitted to the healthy spinal cord. The result is the synchronous discharge of motor units leading to rhythmic jerking.  相似文献   

16.
Electrical high frequency stimulation of the globus pallidus internus or the subthalamic nucleus has beneficial motor effects in advanced Parkinson's disease. The mechanisms underlying these clinical results remain, however, unclear. From previous studies it is proposed that the gamma-aminobutyric acid (GABA) system is involved in the effectiveness of electrical high frequency stimulation. In these experiments, human neocortical slices were stimulated electrically (130 Hz) in vitro, and GABA outflow was measured after o-phthaldialdehyde sulphite derivatization using HPLC with electrochemical detection. Our results could demonstrate that high frequency stimulation (HFS) significantly increased basal GABA outflow in the presence of submaximal concentrations of the voltage-gated sodium channel opener veratridine. This effect could be abolished by the GABA antagonists bicuculline or picrotoxin. These results suggest that HFS has an activating effect on GABAergic neuronal terminals in human neocortical slices, depending on sodium and chloride influx. Since GABA plays a role in CNS disorders of basal ganglia, anxiety and epilepsy, its neocortical modulation by HFS may be (patho)physiologically relevant.  相似文献   

17.
Metabotropic glutamate receptors in the basal ganglia motor circuit   总被引:5,自引:0,他引:5  
In recent years there have been tremendous advances in our understanding of the circuitry of the basal ganglia and our ability to predict the behavioural effects of specific cellular changes in this circuit on voluntary movement. These advances, combined with a new understanding of the rich distribution and diverse physiological roles of metabotropic glutamate receptors in the basal ganglia, indicate that these receptors might have a key role in motor control and raise the exciting possibility that they might provide therapeutic targets for the treatment of Parkinson's disease and related disorders.  相似文献   

18.
Important recent advances have been made in understanding the etiology and pathogenesis of Parkinson's disease, as well as in developing novel treatments. Two newly identified genes, α-synuclein and parkin, have been linked to parkinsonism. In addition, disturbances to the normal basal ganglia circuits in Parkinson's patients are being described at both anatomical and physiological levels. These developments provide a strong scientific basis for novel medical and surgical strategies to treat the profound motor disturbances in patients with Parkinson's disease.  相似文献   

19.
The levels of CB1 cannabinoid receptors in the basal ganglia are the highest in the brain, comparable to the levels of dopamine receptors, a major transmitter in the basal ganglia. This localization of receptors is consistent with the profound effects on motor function exerted by cannabinoids. The output nuclei of the basal ganglia, the globus pallidus (GP) and substantia nigra reticulata (SNr), apparently lack intrinsic cannabinoid receptors. Rather, the receptors are located on afferent terminals, the striatum being the major source. Cannabinoids blocked the inhibitory action of the striatal input in the SNr. Furthermore, cannabinoids blocked the excitatory effect of stimulation of the subthalamic input to the SNr revealing, along with data from in situ hybridization studies, that this input is another likely source of cannabinoid receptors to the SNr. Similar actions of cannabinoids were observed in the GP. Behavioral studies further revealed that the action of cannabinoids differs depending upon which input to the output nuclei of the basal ganglia is active. The inhibitory striatal input is quiescent and the cannabinoid action is observable only upon stimulation of the striatum, while the noticeable effect of cannabinoids under basal conditions would be on the tonically active subthalamic input. These data suggest that the recently discovered endogenous cannabinergic system exerts a major modulatory action in the basal ganglia by its ability to block both the major excitatory and inhibitory inputs to the SNr and GP.  相似文献   

20.
Summary The striatum receives the majority of excitatory amino acidergic input to the basal ganglia from neocortical and allocortical sources. The subthalamic nucleus and the substantia nigra also receive excitatory amino acidergic inputs from neocortex. The subthalamic nucleus, which has prominent projections to the pallidum and nigra, is the only known intrinsic excitatory amino acidergic component of the basal ganglia. Possible excitatory amino acidergic inputs reach the basal ganglia from the intralaminar thalamic nuclei and the pedunculo-pontine nucleus. The striatum is richly endowed with all subtypes of excitatory amino acid receptors and these appear to be inhomogeneously distributed within the striatal complex. The non-striatal nuclei contain lesser levels of excitatory amino acid receptors and the relative proportion of these receptors varies between nuclei. The presence of high densities of excitatory amino acid receptors is a phylogenetically conserved feature of the striatum and its non-mammalian homologues. In Huntington's disease, there is substantial depletion of-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, N-methyl-D-aspartate, and kainate receptors within the striatum. In Parkinson's disease substantia nigra, there is significant loss of N-methyl-D-aspartate and-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号