首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CCC (2-chloroethyltrimethyl ammonium chloride) at a concentration of 6.3 mM was applied to tomato plants (cv. Grosse Lisse) grown in a controlled environment. There was an increase in adaxial leaf diffusive resistance but not in abaxial resistance, the effect being apparent before any growth retardation was measurable. The partial closure of adaxial stomata in response to CCC reduced transpiration from that leaf surface. In plants deprived of water, leaf water potential was higher when CCC was applied and both adaxial and abaxial stomatal closure was delayed. The data do not suggest that CCC influenced the relationship between leaf water potential and conductance for either abaxial or adaxial stomata.  相似文献   

2.
The dynamics of stomatal resistance and osmotic adjustment in response to plant water deficits and stage of physiological development was studied in the leaves of spring wheat ( Triticum aestivum L., GWO 1809). Plants were germinated and grown in pots in a growth chamber at the Duke University Phytotron to four physiological stages of development (4th leaf, 7th leaf, anthesis, and soft dough), during which time stomatal resistance, total water potential and osmotic potential were measured on the last fully developed leaf of water stressed and non-stressed plants. Pressure potential was obtained by difference. Stomatal closure of the abaxial and adaxial surfaces were independent of each other, each having a different critical total water potential. The total water potential required to close the stomata on the last fully developed leaf were different at different stages of physiological development, decreasing as the plants grew older. The development of osmoregulation in wheat allows the closure of stomata during the vegetative stage at a high total water potential, but insures that stomata remain open from anthesis through the ear filling period to a lower total water potential.  相似文献   

3.
Abstract. Cuticular resistance to water vapour diffusion is an important aspect of thermocouple psychrometry and may introduce significant error in the measurement of leaf water potential (Ψ). The effect of the citrus (Citrus mitis Blanco) leaf cuticle on water vapour movement was studied using the times required for vapour pressure equilibration during thermocouple psychrometric measurement of Ψ. Cuticular abrasion with various carborundum powders was used to reduce the diffusive resistance of both the adaxial and abaxial leaf surfaces, and the extent of the disruption to the leaf was investigated with light and electron microscopy. Cuticular abrasion resulted in reduced equilibration times due to decreased cuticular resistance and greater water vapour movement between the leaf and the psychrometer chamber. Equilibration times were reduced from over 5 h in the unabraded control leaves to 1 h with cuticle abrasion. This was associated with the decrease in diffusive resistance with cuticular abrasion from over 55 s cm?1 to less than 8 s cm?1 for both the adaxial and abaxial leaf surfaces. Scanning electron micrographs of the abraded leaf tissue revealed considerable disruption of the stomatal ledge and of the guard cells, surface smoothing and displacement of waxes into the stomatal aperture, and damage to veins. Observations with the transmission electron microscope revealed frequent disruption of epidermal cell walls, and damage to both the cytoplasmic and vacuolar membranes.  相似文献   

4.
Signalling drought in guard cells   总被引:15,自引:1,他引:14  
A number of environmental conditions including drought, low humidity, cold and salinity subject plants to osmotic stress. A rapid plant response to such stress conditions is stomatal closure to reduce water loss from plants. From an external stress signal to stomatal closure, many molecular components constitute a signal transduction network that couples the stimulus to the response. Numerous studies have been directed to resolving the framework and molecular details of stress signalling pathways in plants. In guard cells, studies focus on the regulation of ion channels by abscisic acid (ABA), a chemical messenger for osmotic stress. Calcium, protein kinases and phosphatases, and membrane trafficking components have been shown to play a role in ABA signalling process in guard cells. Studies also implicate ABA-independent regulation of ion channels by osmotic stress. In particular, a direct osmosensing pathway for ion channel regulation in guard cells has been identified. These pathways form a complex signalling web that monitors water status in the environment and initiates responses in stomatal movements.  相似文献   

5.
I. Tari 《Biologia Plantarum》2003,47(2):215-220
The plant growth retardant, paclobutrazol at 8.5 or 17.0 μM concentrations effectively inhibited the stem elongation and primary leaf expansion of bean seedlings. Although the retardant reduced the relative water content in well-watered plants, the water and pressure potentials remained high in the primary leaves. K+, Na+, Mg2+ and Ca2+ contents in the primary leaves of the paclobutrazol-treated plants were not significantly different from those in the control. The stomatal density increased on both surfaces but the length of guard cells was not reduced significantly on the adaxial epidermes of the paclobutrazol-treated primary leaves. The inhibitory effect of paclobutrazol on the abaxial stomatal conductances became more pronounced with time during the light period but the adaxial surfaces displayed similar or slightly higher conductances than those of the control. The transpiration rate on a unit area basis did not change significantly or increased in the treated leaves thus the reduced water loss of paclobutrazol-treated plants was due to the reduced leaf area. Stomatal conductances of the adaxial surfaces responded more intensively to exogenous abscisic acid and the total leaf conductance decreased faster with increasing ABA concentration in the control than in the paclobutrazol-treated leaves. Paclobutrazol, an effective inhibitor of phytosterol biosynthesis, not only amplified the stomatal differentiation but increased the differences between the adaxial and abaxial stomatal conductances of the primary leaves.  相似文献   

6.
Pima S‐6 ( Gossypium barbadense L.) is a modern line with high stomatal conductance, while B368 is a primitive cotton with low conductance. The blue light sensitivity of adaxial guard cells, probed as the blue light‐dependent enhancement of the red light‐induced chlorophyll a fluorescence quenching, was investigated in these two cotton lines with contrasting stomatal conductance. Adaxial guard cells isolated from Pima S‐6 cotton plants had a significantly higher carotenoid content and a higher blue light sensitivity than those isolated from B368 plants. In a growth chamber‐grown F2 population of a cross between these two lines, adaxial stomatal conductances of individual plants segregated over a range exceeding the average conductances of the parents. Carotenoid content and the blue light sensitivity of adaxial guard cells also segregated. The concentrations of xanthophylls and β‐carotene in the adaxial guard cells were poorly correlated with the blue light response, except for zeaxanthin. The co‐segregation of stomatal conductance and blue light sensitivity suggested that the stomatal response to blue light may play a role in the regulation of stomatal conductance in the intact leaf. Zeaxanthin content and blue light sensitivity also co‐segregated, suggesting that both parameters are under genetic control. The co‐segregation of zeaxanthin content, blue light sensitivity and stomatal conductance provides further evidence for a role of zeaxanthin in the blue light photoreception of guard cells.  相似文献   

7.
 施肥降低旱地冬小麦的叶片水势。当作物体内出现水分胁迫时,冬小麦叶片两面气孔对施肥的反应有明显差异。远轴叶面气孔对施肥的反应比近轴叶面气孔敏感。旱地施肥以后,冬小麦远轴叶面气孔首先收缩,且收缩的程度比近轴叶面大,从而使远轴叶面气孔阻力与近轴叶面气孔阻力的比值(Rab/Rad)增大。旱地施肥以后,远轴和近轴叶面气孔阻力均急剧增大,并且随肥力水平的提高(施肥量增加)而缓慢增大,二者呈直线关系发展趋势。旱地施肥对土壤水势有影响,但不论是提高还是降低土壤水势,均增大Rab/Rad。说明施肥确有增强旱地冬小麦远轴叶面气孔对环境因素变化敏感性的作用。  相似文献   

8.
The effects of ethephon on stomatal resistance, water potential, osmotic potential, turgor potential, and ethylene production were determined on leaves of a drought-resistant (KS 65) and a drought-sensitive (IA 25) genotype of sorghum [Sorghum bicolor (L.) Moench] grown under wellwatered or drought-stressed conditions. With both sufficient and limited water supply, ethephon had no effect on the adaxial, abaxial, or total stomatal resistance of either genotype. For both water treatments, the adaxial stomatal resistance of the drought-sensitive genotype was higher than that of the drought-resistant genotype. Ethephon increased the amount of ethylene produced by the plants under both levels of water. For plants with sufficient water, water potentials of both genotypes were lowered by ethephon. Ethephon had no effect on the water potentials under drought or on the osmotic potentials under either water regime. With drought, the turgor potential of the drought-sensitive genotype, but not that of the drought-resistant, was increased by ethephon.  相似文献   

9.
A model of stomatal conductance was developed to relate plant transpiration rate to photosynthetic active radiation (PAR), vapour pressure deficit and soil water potential. Parameters of the model include sensitivity of osmotic potential of guard cells to photosynthetic active radiation, elastic modulus of guard cell structure, soil‐to‐leaf conductance and osmotic potential of guard cells at zero PAR. The model was applied to field observations on three functional types that include 11 species in subtropical southern China. Non‐linear statistical regression was used to obtain parameters of the model. The result indicated that the model was capable of predicting stomatal conductance of all the 11 species and three functional types under wide ranges of environmental conditions. Major conclusions included that coniferous trees and shrubs were more tolerant for and resistant to soil water stress than broad‐leaf trees due to their lower osmotic potential, lignified guard cell walls, and sunken and suspended guard cell structure under subsidiary epidermal cells. Mid‐day depression in transpiration and photosynthesis of pines may be explained by decreased stomatal conductance under a large vapour pressure deficit. Stomatal conductance of pine trees was more strongly affected by vapour pressure deficit than that of other species because of their small soil‐to‐leaf conductance, which is explainable in terms of xylem tracheids in conifer trees. Tracheids transport water by means of small pit‐pairs in their side walls, and are much less efficient than the end‐perforated vessel members in broad‐leaf xylem systems. These conclusions remain hypothetical until direct measurements of these parameters are available.  相似文献   

10.
Abstract Leaf diffusion resistance and leaf water potential of intact Solanum melongena plants were measured during a period of chilling at 6 °C. Two pretreatments, consisting of a period of water stress or a foliar spraying of abscisic acid (ABA), were imposed upon the plants prior to chilling. The control plants did not receive a pretreatment. In addition to intact plant studies, stomatal responses to water loss and exogenous abscisic acid were investigated using excised leaves, and the influence of the pretreatment observed. Chilled, control plants wilted slowly and maintained open stomata despite a decline in leaf water potential to –2.2 MPa after 2 d of chilling. In contrast plants that had been water stressed or had been sprayed with abscisic acid, prior to chilling, did not wilt and maintained a higher leaf water potential and a greater leaf diffusion resistance. In plants that had not received a pretreatment, abscisic acid caused stomatal closure at 35 °C, but at 6°C it did not influence stomatal aperture. The two pretreatments greatly increased stomatal sensitivity to both exogenous ABA and water stress, at both temperatures. Stomatal response to water loss from excised leaves was greatly reduced at 6°C. These results are discussed in relation to low temperature effects on stomata and the influence of preconditioning upon plant water relations.  相似文献   

11.
A steady state model of stomatal response to plant water deficit was developed. It simulates typical stomatal resistance-leaf water potential functions; that is, stomatal resistance remains relatively constant until leaf water potential decreases to a threshold value, at which point stomatal resistance increases abruptly. The model shows that differences in the elastic properties of guard cells and surrounding epidermal cells determine the shape of the stomatal resistance-leaf water potential function. The model also simulates the effects of seasonal osmoregulation. This relatively slow accumulation of osmotically active solutes within plant cells reduces the threshold leaf water potential value. By contrast, the relatively rapid diurnal accumulation of osmotically active photosynthates in non-guard cells raises the threshold leaf water potential. This effect can occur if guard cells have a mechanism such as a sugar-starch conversion which prevents osmotically-active photosynthates from accumulating in their vacuoles.  相似文献   

12.
The effects of ethephon on stomatal resistance, water potential, osmotic potential, turgor potential, and ethylene production were determined on leaves of a drought-resistant (KS 65) and a drought-sensitive (IA 25) genotype of sorghum [Sorghum bicolor (L.) Moench] grown under wellwatered or drought-stressed conditions. With both sufficient and limited water supply, ethephon had no effect on the adaxial, abaxial, or total stomatal resistance of either genotype. For both water treatments, the adaxial stomatal resistance of the drought-sensitive genotype was higher than that of the drought-resistant genotype. Ethephon increased the amount of ethylene produced by the plants under both levels of water. For plants with sufficient water, water potentials of both genotypes were lowered by ethephon. Ethephon had no effect on the water potentials under drought or on the osmotic potentials under either water regime. With drought, the turgor potential of the drought-sensitive genotype, but not that of the drought-resistant, was increased by ethephon.Contribution no. 90-147-J of the Journal Series of the Kansas Agricultural Experiment Station, Manhattan, Kansas, USA.  相似文献   

13.
Abstract Previous work with clones of Populus trichocarpa demonstrated that the water vapour conductance of leaves from well-watered cuttings of this species does not decline with loss of turgor from the bulk leaf. In the present study, stomatal responses to water potential in Populus were examined with detached epidermal strips. Stomata in epidermal strips from well-watered plants of P. trichocarpa did not close at low water potentials which led to plasmolysis of the guard cells. In contrast, stomata of P. deltoides and a P. trichocarpa×deltoides hybrid closed when the guard cells lost turgor. A period of water stress preconditioning resulted in modified stomatal responses in P. trichocarpa such that stomata of stressed and re-watered plants nearly closed when guard cell turgor was lost.  相似文献   

14.
Ozone induces stomatal sluggishness, which impacts photosynthesis and transpiration. Stomatal responses to variation of environmental parameters are slowed and reduced by ozone and may be linked to difference of ozone sensitivity. Here we determine the ozone effects on stomatal conductance of each leaf surface. Potential causes of this sluggish movement, such as ultrastructural or ionic fluxes modification, were studied independently on both leaf surfaces of three Euramerican poplar genotypes differing in ozone sensitivity and in stomatal behaviour. The element contents in guard cells were linked to the gene expression of ion channels and transporters involved in stomatal movements, directly in microdissected stomata. In response to ozone, we found a decrease in the stomatal conductance of the leaf adaxial surface correlated with high calcium content in guard cells compared with a slight decrease on the abaxial surface. No ultrastructural modifications of stomata were shown except an increase in the number of mitochondria. The expression of vacuolar H+/Ca2+‐antiports (CAX1 and CAX3 homologs), β‐carbonic anhydrases (βCA1 and βCA4) and proton H+‐ATPase (AHA11) genes was strongly decreased under ozone treatment. The sensitive genotype characterized by constitutive slow stomatal response was also characterized by constitutive low expression of genes encoding vacuolar H+/Ca2+‐antiports.  相似文献   

15.
Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent.  相似文献   

16.
Critical Water Potential for Stomatal Closure in Sitka Spruce   总被引:1,自引:0,他引:1  
Steady state rates of net photosynthesis and stomatal conductance at high water potentials were measured under controlled conditions in a leaf chamber on Sitka spruce [Picea sitchensis (Bong.) Carr.] shoots detached from the forest canopy or on seedlings. The water supply to the seedlings was terminated by excision and the shoot water potential (or critical water potential) and osmotic potential at the onset of stomatal closure measured. The turgor potential was calculated. The initial osmotic potential before insertion of the shoot into the chamber was also measured. Shoot water potential and osmotic potential at stomatal closure, and initial osmotic potential were significantly higher (less negative) in foliage from the lowest level in the canopy compared with foliage in the upper canopy, and higher in shoots of seedlings transferred to low light than in those at high light. Critical water potential also varied with season, being higher in July than in October and November. In all except one instance, turgor potential at the onset of stomatal closure was negative, possibly because of dilution of the cell sap by the extracellular water during the estimate of osmotic potential. Over all the experiments variation in critical water potential was correlated with variation in critical osmotic potential and, to a lesser extent, the initial osmotic potential. However, turgor potential at the critical potential varied from +0.6 to -4.6 bar. This suggests that difference in turgor between the guard cells and subsidiary cells, which controls stomatal aperture, is only loosely coupled with the bulk leaf turgor and hence that bulk leaf turgor is not a good index of the turbor relations of the guard cells.  相似文献   

17.
Genotypes of sorghum [Sorghum bicolor (L.) Moench] vary in drought resistance. Yet it is not known if their hydraulic resistances vary. The objective of this study was to determine if the hydraulic resistance of a drought-resistant sorghum was the same as that of a drought-sensitive sorghum. Leaf water and osmotic potentials were measured daily, during a 14-d period, in leaves of a drought-resistant (‘KS9’) and a drought-sensitive (‘IA25’) sorghum, which had the roots in pots with a commercial potting soil that was either well watered or allowed to dry. Soil water potential, adaxial stomatal resistance, and transpiration rate were determined daily. Hydraulic resistance of the plants was calculated from the slope of the line relating soil water potential minus leaf water potential versus transpiration rate. When the soil was not watered, the drought-sensitive sorghum had a water potential that averaged −0.50 MPa lower and an osmotic potential that averaged −0.57 MPa lower, but a similar adaxial stomatal resistance (1.19 s mm−1), compared with the drought-resistant sorghum. Seven days after the beginning of the experiment, the water potential of the soil with the drought-sensitive sorghum was −0.25 MPa lower than that of the soil with the drought-resistant sorghum. With the water-limited conditions, the drought-sensitive sorghum depleted the soil-water reserve more quickly and died 2 d before the drought-resistant sorghum. Under well watered conditions, the two sorghums had similar water potentials (−1.64 MPa), osmotic potentials (−2.83 MPa), and adaxial stomatal resistances (0.78 s mm−1). The calculated hydraulic resistance of the two sorghums did not differ and averaged 3.4 × 107 MPa s m−1. The results suggested that the variation in susceptibility to drought between the two genotypes was due to differences in rate of soil-water extraction. Contribution No. 86-249-J from the Kansas Agricultural Experiment Station. The paper is dedicated to the memory of Dr Dan M Rodgers.  相似文献   

18.
Summary The influence of water stress on photosynthesis of drought hardened, and non-hardened,Eucalyptus socialis plants was examined. Particular attention was given to the effects of low leaf water potential on stomatal and intracellular resistance to CO2 transport and on the CO2 compensation point. Though the hardening treatment had a pronounced influence on leaf morphology, there was no apparent difference in the photosynthetic response to drought stress between hardened and non-hardened treatments, or with repeated drought cycles. These results suggest a high degree of genetic preconditioning to drought in this species.  相似文献   

19.
冬小麦近轴和远轴叶面气孔对土壤水分胁迫反应的敏感性   总被引:3,自引:0,他引:3  
当根层土壤水分含量不足,作物体内出现水分胁迫时,小麦叶片两面气孔的反应有明显差异。远轴叶面气孔对水分胁迫的反应比近轴叶面气孔敏感。当出现水分胁迫时,远轴叶面气孔首先收缩,且收缩的程度比近轴叶面气孔大。远轴与近轴叶面气孔阻力的比值(r_(ab)/r_(ab))与根层平均土壤水势(Ψ_s)有关,当Ψ_s大于-50 kPa时,r_(ab)/r_(ad)基本稳定在1.5左右,而当Ψ_s小于-50 kPa时,r_(ab )/r_(ab)随Ψ_s降低而明显增加。  相似文献   

20.
Abstract. A model of water flow from the soil into the plant, and from the plant to the atmosphere is described. There are three state variables in the model: the soil, root and shoot water contents. The flow rate of water from the soil to the root is calculated by dividing the gradient in water potential by a resistance, comprising the resistance from the bulk soil to the root surface, and that from the root surface to the root interior. The resistance in the soil depends on the soil hydraulic conductivity, which in turn depends on the soil water potential. The flow rate from the root to the shoot is given by the gradient in water potential divided by a resistance, which depends on the structural dry mass of the plant. Transpiration is described by the Penman-Monteith equation. The plant water characteristics can be modified to take account of osmotic and cell wall rigidity parameters. The model incorporates the concept of shoot/root ‘messages’ of water stress, which influence stomatal conductance. The message works through the generation of a hormone as the pressure potential in the shoot (mesophyll) or root falls. This hormone induces a shift of osmoticum from the guard cells to the surrounding mesophyll cells, which causes an increase (i.e. closer to zero) in the osmotic potential in these cells. This, in turn, causes a decrease in their pressure potential, and so reduces stomatal conductance. The model is used as a framework to address some of the issues that have recently been raised concerning the role of water potential in describing water flow through plants. We conclude that, with the hormone present, there is unlikely to be a unique relationship between stomatal conductance and shoot total water potential, since stomatal conductance depends on the pressure potential in the guard cells, which may differ from that in other cells. Nevertheless, this does not imply that water potential is not an important, and indeed fundamental, component for describing water flow through plants. Other aspects of water flow through plants are also considered, such as diurnal patterns of shoot, root and soil water potential components. It is seen that these may differ from the commonly held view that, as the soil dries down, they all attain the same values during the dark period, and which, as we show, is largely unsubstantiated either theoretically or experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号