首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of umbilical cord occlusion in the initiation of breathing at birth was investigated using unanesthetized fetal sheep that were provided with access to a tracheal supply of hyperoxic air. Near-term fetuses were studied in utero to eliminate extraneous sensory stimuli. Gasping movements began 1.4 +/- 0.1 min after cord occlusion. Breathing was irregular for several minutes before continuous breathing (greater than or equal to 40 min-1) began 6 +/- 1 min after cord occlusion (n = 10). Arterial PO2 rose significantly from 18 +/- 2 mmHg before occlusion and was 115 +/- 15 mmHg immediately before cord release at 15 or 30 min. Breathing continued even during high-voltage electrocortical activity. Cord release caused the breathing rate to decrease from 77 +/- 13 min-1 during the last 5 min of cord occlusion to 5 +/- 3 min-1 10 min after cord release (P less than 0.002; n = 7). Results indicate the change from placental to lung gas exchange can occur in the absence of sensory and thermal changes normally present at birth and that the transition is reversible.  相似文献   

2.
Effect of ischaemia, induced by abdominal aorta occlusion, and subsequent survival on the activity of arylamidases was studied in the lumbar and cervical spinal cord of the rabbit. No effect of 40 min ischaemia on the activity of arylamidases was found either in homogenates or in subcellular fractions of the spinal cord. In the lumbar spinal cord a moderate decrease in arylamidase activity was observed after 1 day of survival and a marked decrease was found after 4 days. The decrease were localized in the microsomal and, particularly, in the cytosole fraction. No changes were found in the cervical spinal cord at the corresponding intervals.  相似文献   

3.
Although the administration of 100% O2 alone or combined with umbilical cord occlusion induces continuous breathing and arousal in the fetal sheep (Baier, Hasan, Cates, Hooper, Nowaczyk & Rigatto, 1990a), the individual contribution of O2 and cord occlusion to the response have not been determined. We hypothesized that if O2 is an important factor in the induction of continuous breathing, administration of O2 low enough (10%) to bring fetal arterial PO2 to about 20 torr while the fetus is breathing continuously should reverse these changes. Thus we subjected 12 chronically instrumented fetal sheep to 10% O2 for 10 minutes after the establishment of continuous breathing by O2 (4 fetuses; 137 +/- 1 days) or by O2 plus umbilical cord occlusion (8 fetuses; 134 +/- 1 days). Arterial PO2 decreased from about 250 torr to 20 torr during 10% O2. This induced a significant decrease in breathing output (EMGdi x f) related primarily to a decrease in frequency (f). In 3/5 experiments in 4 fetuses, with O2 alone, apnoea developed within 4 +/- 0.6 min; in 12/13 experiments in 8 fetuses, with added cord occlusion it developed at 5 +/- 0.6 min. With the decrease in PaO2, electrocortical activity (ECoG) switched from low to high-voltage within 6 minutes in 5/5 experiments (O2 alone) and in 11/13 (O2 plus cord occlusion). The findings suggest that umbilical cord occlusion alone is not sufficient to maintain breathing continuously and an increased PaO2 is needed. We speculate that in the fetus there is a vital link between PaO2, breathing and ECoG with low PaO2 inhibiting and high PaO2 favouring breathing and arousal.  相似文献   

4.
This study tested the hypothesis that a pathophysiologic insult to the fetus that decreases pH (umbilical cord occlusion) produces an increase in physiologically active (i.e., ionized) magnesium concentration. Preterm pregnant sheep (n = 7) were instrumented with maternal and fetal catheters and an inflatable vascular occluder was placed around the umbilical cord. After a 2-day recovery period, each ewe received a 4-g loading dose, followed by continuous intravenous infusion of 1 g magnesium sulfate/h. After 48 h, an episode of acute fetal distress was produced by inflation of the umbilical occluder for 10 min. Maternal and fetal arterial blood samples were collected at regular intervals to quantitate ionized magnesium concentration and monitor physiologic status. Magnesium sulfate infusion increased maternal and fetal blood ionized magnesium concentration. In vitro blood analysis demonstrated that there was a linear inverse correlation (r2 = 0.99) between fetal sheep blood pH and ionized magnesium concentration. In vivo, 10 min of umbilical cord occlusion produced an increase in fetal blood ionized magnesium concentration in all animals (P = 0.02) that was temporally related to the decrease in fetal blood pH. Whether this increase in physiologically active magnesium concentration is beneficial (via neuroprotection) or deleterious (via suppression of stress response) to the distressed fetus remains to be determined.  相似文献   

5.
On 25-30-day rabbit foetuses, in chronic experiments using constant synchronous recording of the motor activity and heart rate, studies have been made of temporal organization of the activity-rest cycle. Already in 25-day foetus, three functional conditions may be distinguished: active, intermediate and resting ones, the duration of the latter increasing to the end of gestation up to 8-10 min, whereas the duration of the intermediate phase decreases, reaching its minimum to the 30th day if not being completely reduced. Cyclic pattern of active and resting phases is observed in 28-day foetuses; to the 29th-30th day, these phases from a unique activity-rest cycle, its duration reaching 20-30 min to the end of intrauterine period. It is suggested that the resting phase in foetal rabbits serves as a basis for the development of polyphasic sleep in adult animals.  相似文献   

6.
This study was undertaken to determine the mechanisms mediating changes in fetal heart rate variability (FHRV) during and after exposure to asphyxia in the premature fetus. Preterm fetal sheep at 0.6 of gestation (91 +/- 1 days, term is 147 days) were exposed to either sham occlusion (n = 10) or to complete umbilical cord occlusion for either 20 (n = 7) or 30 min (n = 10). Cord occlusion led to a transient increase in FHRV with abrupt body movements that resolved after 5 min. In the 30 min group there was a marked increase in FHRV in the final 10 min of occlusion related to abnormal atrial activity. After reperfusion, FHRV in both study groups was initially suppressed and progressively increased to baseline levels over the first 4 h of recovery. In the 20 min group this improvement was associated with return of normal EEG activity and movements. In contrast, in the 30 min group the EEG was abnormal with epileptiform activity superimposed on a suppressed background, which was associated with abnormal fetal movements. As the epileptiform activity resolved, FHRV fell and became suppressed for the remainder of the study. Histological assessment after 72 h demonstrated severe brain stem injury in the 30 min group but not in the 20 min group. In conclusion, during early recovery from asphyxia, epileptiform activity and associated abnormal fetal movements related to evolving neural injury can cause a confounding transient increase in FHRV, which mimics the normal pattern of recovery. However, chronic suppression of FHRV was a strong predictor of severe brain stem injury.  相似文献   

7.
Abstract The glutamate (Glu) terminals in rat neostriatum were removed by a unilateral frontal decortication. One to two weeks later the effects of insulin-induced hypoglycemia on the steady-state levels of amino acids [Glu, glutamine (Gin), aspartate (Asp), γ-aminobutyric acid (GABA), tau-rine] and energy metabolites (glucose, glycogen, α-ketoglu-tarate, pyruvate, lactate, ATP, ADP, AMP, phosphocre-atine) were examined in the intact and decorticated neostriatum from brains frozen in situ. The changes in the metabolite levels were examined during normoglycemia, hypoglycemia with burst-suppression (BS) EEG, after 5 and 30 min of hypoglycemic coma with isoelectric EEG, and 1 h of recovery following 30 min of isoelectric EEG. In normoglycemia Glu decreased and Gin and glycogen increased significantly on the decorticated side. During the BS period no significant differences in the measured compounds were noted between the two sides. After 5 min of isoelectric EEG Glu, Gin, GABA, and ATP levels were significantly lower and Asp higher on the intact than on the decorticated side. No differences between the two sides were found after 30 min of isoelectric EEG. After 1 h of recovery from 30 min of isoelectric EEG Glu, Gin, and glycogen had not reached their control levels. Glu was significantly lower, and Gin and glycogen higher on the decorticated side. The Asp and GABA levels were not significantly different from control levels. The results indicate that the turnover of Glu is higher in the intact than in decorticated neostriatum during profound hypoglycemia.  相似文献   

8.
Catheters were implanted in 18 gilts at 99 days of pregnancy to study the effects of meal intake on uterine and umbilical uptake of energetic substrates in the conscious pig. Blood samples were withdrawn at 105 days of pregnancy from 10 min before and up to 90 min after feeding of a 2.5-kg meal. Plasma glucose was 2.2 to 2.5 times lower and blood lactate 2 to 3 times higher in the foetus than in the sow. Glucose and lactate increased after the meal. Their umbilical uptake amounted to 0.32 and 0.26 mmol x L(-1), respectively. Fructose was found in large amounts in foetal plasma (4.3 mmol x L(-1)), but it did not seem to be metabolised by the foetus. Meal intake decreased plasma levels of FFA and glycerol in the sows, whereas they increased in the foetuses. A small FFA and glycerol umbilical uptake was recorded (14 and 6 micromol L(-1), respectively). Most features of the materno-foetal exchanges in the porcine species resemble those of other species, especially ruminants.  相似文献   

9.
The development of haptoglobin blood system was studied in the sheeps during intrauterine development and early postnatal period. The haptoglobin content was shown to decrease with the foetus age, two peaks of its reliable increase having been, however, noted -- on the 55th and 105th days of development. After the birth the haptoglobin concentration in blood is relatively low, increases gradually and attains by the 8th month of life that in adult animals. In the blood serum of 45--120 days old foetuses two phenotypes of fetal haptoglobin were found; the adult haptoglobin is present only beginning from the 1st month of life.  相似文献   

10.
There is evidence that preterm fetuses have blunted chemoreflex-mediated responses to hypoxia. However, the preterm fetus has much lower aerobic requirements than at term, and so moderate hypoxia may not be sufficient to elicit maximal chemoreflex responses; there are only limited quantitative data on the ontogeny of chemoreflex and hemodynamic responses to severe asphyxia. Chronically instrumented fetal sheep at 0.6 (n = 12), 0.7 (n = 12), and 0.85 (n = 8) of gestational age (GA; term = 147 days) were exposed to 30, 25, or 15 min of complete umbilical cord occlusion, respectively. At all ages, occlusion was associated with early onset of bradycardia, profoundly reduced femoral blood flow and conductance, and hypertension. The 0.6-GA fetuses showed a significantly slower and lesser fall in femoral blood flow and conductance compared with the 0.85-GA group, with a correspondingly reduced relative rise in mean arterial blood pressure. As occlusion continued, the initial adaptation was followed by loss of peripheral vasoconstriction and progressive development of hypotension in all groups. The 0.85-GA fetuses showed significantly more sustained reduction in femoral conductance but also more rapid onset of hypotension than either of the younger groups. Electroencephalographic (EEG) activity was suppressed during occlusion in all groups, but the degree of suppression was less at 0.6 GA than at term. In conclusion, the near-midgestation fetus shows attenuated initial (chemoreflex) peripheral vasomotor responses to severe asphyxia compared with more mature fetuses but more sustained hemodynamic adaptation and reduced suppression of EEG activity during continued occlusion of the umbilical cord.  相似文献   

11.
A highly purified preparation of staphylococcal enterotoxin B was administered intravenously, 1 mg/kg, to rhesus monkeys. Electroencephalograms (EEG) were recorded from electrodes attached to the skin or implanted on the dura. The dose of toxin employed consistently produced a sequence of vascular collapse followed by death; in control studies, animals were bled periodically to produce a similar pattern of shock. Regardless of the time to death following administration of the enterotoxin, there were essentially no changes from base line EEG patterns until shortly before death. With the development of preterminal severe shock, there was a marked decrease in EEG wave frequency and an initial increase in amplitude. The latter diminished progressively to produce an isoelectric tracing immediately prior to death. This could be reversed for a brief period by epinephrine. An identical sequence of EEG changes was observed during the terminal period of hemorrhagic shock. It is postulated that cerebral anoxia, caused by inadequate blood flow, is the primary cause of the altered EEG patterns that accompany enterotoxin toxicity. In this respect, staphylococcal enterotoxin B produces changes apparently similar to bacterial endotoxin but distinctly different from the EEG effects reported after botulinum toxin, anthrax toxin, or rattlesnake and cobra venom.  相似文献   

12.
The frequency of nuclear pores/μ2 in isolated nuclei from ischemic rat kidneys decreased by half after 20 min of occlusion of the blood supply to the kidney. The decrease in pore number remained constant through 120 min ischemia. Particles in the concave fracture face of the outer nuclear membrane changed from a random distribution in control nuclei to a reticular pattern after 20 min ischemia, becoming more sparse and clustered through 120 min ischemia. Deterioration of the pore structure also was noted after 120 min ischemia. It is suggested that these changes are related to loss of nuclear function.  相似文献   

13.
In experiments on 5-30-day rat puppies, studies have been made of the effect of L-DOPA (100 mg/kg, intraperitoneally) on the activity of interneurones of the dorsal horn of the spinal cord as revealed from the parameters of potentials of the dorsal surface of the spinal cord. The specific pattern of reaction in 5-day animals is manifested in a succession of inhibitory inhibition and increase in the activity of neurones monosynaptically activated by low-threshold afferents. Both the amplitude and duration of polysynaptic components of the potentials of the dorsal surface are rather high. From the 7th day, deep and stable inhibition is observed which is accompanied by a decrease in the amplitude of all components of the potential of the dorsal surface. At later stages of ontogenesis, a decrease is observed in the inhibitory effect of L-DOPA on the activity of interneurones which monosynaptically contact with low- and especially high-threshold afferents; in contrast to earlier stages, but similar to adult animals, evident inhibition was revealed in the activity of interneurones which have polysynaptic contacts with high-threshold afferents and afferents of flexor reflex. Thus, within the first weeks of postnatal life, basic qualitative changes are observed in the pattern of the reaction of interneurones of the dorsal horn to exogenic catecholamines.  相似文献   

14.
The role of umbilical cord occlusion in the initiation of breathing at birth was investigated by use of 16 unanesthetized fetal sheep near full term. Artificial ventilation with high-frequency oscillation was used to control fetal arterial blood gas tensions. At baseline, PCO2 was maintained at control fetal values and PO2 was elevated to between 25 and 50 Torr. In the first study on six intact and four vagotomized fetuses, arterial PCO2 and PO2 were maintained constant during two 30-min periods of umbilical cord occlusion. Nevertheless, the mean fetal breathing rate increased significantly when the umbilical cord was occluded. In the second study on six intact fetuses, hypercapnia (68 Torr) was imposed by adding CO2 to the ventilation gas. When the umbilical cord was occluded, there was a significantly greater stimulation of breathing (rate, incidence, and amplitude) in response to hypercapnia than in response to hypercapnia alone. During cord occlusion, plasma prostaglandin E2 concentration decreased significantly. Results indicate that cord occlusion stimulates breathing possibly by causing the removal of a placentally produced respiratory inhibitor such as prostaglandin E2 from the circulation.  相似文献   

15.
There is limited information about whether preexisting fetal hypoxia alters hemodynamic responses and changes in T/QRS ratio and ST waveform shape during subsequent severe asphyxia. Chronically instrumented near-term sheep fetuses (124 +/- 1 days) were identified as either normoxic Pa(O(2)) > 17 mmHg (n = 9) or hypoxic Pa(O(2)) < or = 17 mmHg (n = 5); then they received complete occlusion of the umbilical cord for 15 min. Umbilical cord occlusion led to sustained bradycardia, severe acidosis, and transient hypertension followed by profound hypotension in both groups. Preexisting hypoxia did not affect changes in mean arterial blood pressure but was associated with a more rapid initial fall in femoral blood flow and vascular conductance and with transiently higher fetal heart rate at 2 min and from 9 to 11 min of occlusion compared with previously normoxic fetuses. Occlusion was associated with a significant but transient rise in T/QRS ratio; preexisting hypoxia was associated with a significant delay in this rise (maxima 3.7 +/- 0.4 vs. 6.2 +/- 0.5 min), but a slower rate of fall. There was a similar elevation in troponin-T levels 6 h after occlusion in the two groups [median (range) 0.43 (0.08, 1.32) vs. 0.55 (0.16, 2.32) microg/l, not significant]. In conclusion, mild preexisting hypoxia in normally grown singleton fetal sheep is associated with more rapid centralization of circulation after umbilical cord occlusion and delayed elevation of the ST waveform and slower fall, suggesting that chronic hypoxia alters myocardial dynamics during asphyxia.  相似文献   

16.
We investigated the effects of chronic intrauterine hypoxaemia produced by prolonged partial umbilical cord compression on the circulation shortly after birth in lambs. Vascular catheters were inserted in 10 fetal sheep at 120 to 130 days gestation to measure descending aortic blood gases, arterial pH, and arterial O2 saturation. An inflatable silicone rubber balloon cuff was also placed around the umbilical cord. After recovery and the return of descending aortic blood gases to the normal range, the balloon was gradually inflated, decreasing the PaO2 from 21.2 +/- 3.6 to 17.5 +/- 1.3 mm Hg and the arterial O2 saturation from 57.1 +/- 9.2% to 37.2% +/- 5.2. After 14.3 +/- 3.7 days of partial umbilical cord compression, the lambs were delivered by Caesarean section, instrumented to measure systemic and pulmonary arterial, right atrial and pulmonary arterial wedge pressures, pulmonary and systemic blood flows, and mechanically ventilated. Five normal lambs were also studied. From 60 to 120 min after delivery, when compared to normal lambs, the umbilical compression lambs had an increased pulmonary arterial pressure (P less than 0.05) pulmonary vascular resistance (P less than 0.05), and right atrial pressure (P less than 0.05) with similar arterial blood gases. In both groups, hypoxic ventilation produced an increase in pulmonary arterial pressure (P less than 0.05) which on return to room air ventilation decreased to baseline in the normal lambs but not in the umbilical cord compression lambs (P less than 0.05). Prolonged partial umbilical cord compression produces chronic fetal hypoxaemia and pulmonary arterial hypertension after birth. This may represent a model to study the pathophysiology of persistent pulmonary hypertension syndrome.  相似文献   

17.
Human umbilical cord blood (HUCB) cells protect the brain against ischemic injury, yet the mechanism of protection remains unclear. Using both in vitro and in vivo paradigms, this study examined the role of Akt signaling and peroxiredoxin 4 expression in human umbilical cord blood cell-mediated protection of oligodendrocytes from ischemic conditions. As previously reported, the addition of HUCB cells to oligodendrocyte cultures prior to oxygen glucose deprivation significantly enhanced oligodendrocyte survival. The presence of human umbilical cord blood cells also increased Akt phosphorylation and elevated peroxiredoxin 4 expression in oligodendrocytes. Blocking either Akt or peroxiredoxin 4 activity with Akt Inhibitor IV or a peroxiredoxin 4-neutralizing antibody, respectively, negated the protective effects of human umbilical cord blood cells. In vivo, systemic administration of human umbilical cord blood cells 48 h after middle cerebral artery occlusion increased Akt phosphorylation and peroxiredoxin 4 protein expression while reducing proteolytic cleavage of caspase 3 in oligodendrocytes residing in the ipsilateral external capsule. Moreover, human umbilical cord blood cells protected striatal white matter bundles from degeneration following middle cerebral artery occlusion. These results suggest that the soluble factors released from human umbilical cord blood cells converge on Akt to elevate peroxiredoxin 4 levels, and these effects contribute to oligodendrocyte survival.  相似文献   

18.
Reactive oxygen intermediates induce cell injury in a variety of pathophysiological conditions. Human umbilical cord vein endothelial cell (HUVEC) cultures were exposed to 1 or 200 microM H2O2 for 15 min, and observed after 15 min, or 1, 4, 24, or 120 h. Factor VIII and the cytoskeletal proteins vimentin and tubulin were visualized immunocytochemically. Release of lactate dehydrogenase (indices of cell membrane injury) did not increase after H2O2 exposure; nor was cellular expression of factor VIII affected. 200 microM H2O2 induced cell contraction after 15 min which disappeared after 1 and 4 h, but was evident again after 24 h. Immediately after exposure, the filamentous structure of vimentin and tubulin disappeared, but normalized after 1 h. After 120 h, the cytoskeleton filaments were coarsened and disorganized, and an abundance of multinucleated giant cells were observed. Catalase (150 U/ml) abolished all effects of H2O2. One microM H2O2 did not induce any changes in HUVEC. Thus, the present concentrations of H2O2 did not induce cell necrosis or altered expression of factor VIII. Early, reversible cell contraction and depolymerization of cytoskeletal proteins were observed, followed by a delayed contraction and cell atypia after 200 microM H2O2.  相似文献   

19.
The electrophysiological effects of unilateral MCA occlusion for 45 minutes and subsequent recirculation for 3 hours were studied in cats. EEG, steady (DC) potentials, tissue available O2 were measured and metabolic changes were studied. Computed EEG analysis was carried out off line, changes in frequency index and total intensity were analyzed and compared to regional metabolic alterations. It is concluded that: 1. Exenteration of the orbita results in significant and long lasting changes of the EEG, so, a less traumatic method of focal ischemia should be elaborated. 2. Changes in EEG (intensity or frequency content) caused by 45 min MCA occlusion seldom exhibit complete restitution by the end of a 3 hours long recirculation period. 3. Diaschisis can often be detected in this focal ischemic model by computed EEG evaluation. 4. Severe electrophysiological alterations after recirculation usually reflected extended metabolic damage. Mild EEG disturbances can cover both biochemically intact or slightly injured brain tissue.  相似文献   

20.
The effect of apomorphine (1 mg/kg egg weight) on a base of the pre-administration of reserpine (2.5 mg/kg e.w.) 30 min or 2 or 4 hours previously was studied in chick embryos from the 13th to 19th day of incubation. Only the depressant effect of apomorphine was manifested in 13-day embryos. In 15-day embryos summation of the depressant effect of both drugs was recorded for the first time. In 17-day and especially 19-day embryos apomorphine raised the frequency of spontaneous movements high above the level of reserpine-induced depression of motor activity. This activating effect of apomorphine depended upon the supraspinal parts of the CNS, as it disappeared in 17-day embryos after decentralization of the spinal cord (particularly after chronic decapitation). We consider these findings to be further experimental evidence of the participation of catecholaminergic (in particular dopaminergic) central systems in supraspinal control of embryonic motor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号