首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogenic chemicals such as alkylphenols (APs) have been shown to disrupt the reproductive system of male fish. In the present study, the effects of the estrogenic chemical octylphenol (100 microg g(-1)) and 17 beta-estradiol on the semen production and the biochemical composition of the seminal fluid of the viviparous eelpout (Zoarces viviparus) were investigated at the time of spawning. After 10 days of octylphenol or estrogen treatment, vitellogenin (Vtg) synthesis was induced as indicated by increased plasma vitellogenin concentration. In accordance with the increased vitellogenin concentration, hepatosomatic index (HSI), total protein concentration, and total calcium concentration were also increased, and free amino acids concentration was decreased in blood plasma. Octylphenol treatment caused a decrease in the gonadosomatic index (GSI) and the milt volume and an increase in the spermatocrit. The histological examination revealed that octylphenol affected the normal lobular structure, including the Sertoli cells. In the majority of the octylphenol-treated fish, trapped sperm cells were observed in parts of the seminiferous lobules and the sperm ducts. The biochemical composition of the seminal fluid was also affected by the octylphenol or estrogen. The seminal plasma concentrations of magnesium, calcium, and total protein were elevated, and the concentration of free amino acids was reduced in the treated fish. This study indicates that octylphenol inhibits the seminal fluid production and changes its biochemical composition in eelpouts.  相似文献   

2.
Semen lipid composition was examined in young and mature bulls. Given the specific roles of various semen compartments (i.e., seminal fluid, sperm head, and sperm tail) during fertilization, we hypothesized that altered fatty acid and cholesterol composition of a specific compartment might impair semen quality and sperm function. Semen samples were collected from five mature and five young Holstein Friesian bulls during the winter (December–January). Semen was evaluated by computerized sperm-quality analyzer for bulls and was centrifuged to separate the sperm from the seminal fluid. The sperm fraction was sonicated to separate its head and tail compartments. Cold extraction of lipids was performed, and fatty acids and cholesterol were identified and quantified by gas chromatography. Semen physiological features (concentration, motility, and progressive motility) did not differ between mature and young bulls. However, lipid composition within fractions varied between groups, with prominent impairments in the head compartment. In particular, the proportions of polyunsaturated fatty acids, omega-3 fatty acids, and docosahexaenoic acid in the intact sperm; seminal fluid; and sperm head were lower in semen collected from mature bulls than in that from young bulls. The finding suggests an age-differential absorption and/or metabolism through spermatogenesis. Reduced proportions of major fatty acids in mature bulls might reduce membrane fluidity, which in turn might affect the ability to undergo cryopreservation and/or oocyte-sperm fusion through fertilization.  相似文献   

3.
Alburnus alburnus, Leuciscus cephalus and Vimba vimba efferent duct systems of the male gonads consist of testicular main ducts and spermatic ducts. These have similar histological, fine structural and (enzyme–) histochemical characteristics and function in (1) storage and (2) nutrition of spermatozoa, (3) synthesis of steroid glucuronides, (4) secretion of proteins and enzymes (5) formation of an ionic gradient in the seminal fluid and (6) they have auto– and heterophagocytotic activities. Therefore testicular main ducts and spermatic ducts are important in the formation of the seminal fluid.  相似文献   

4.
IgG1 monoclonal antibody to purified seminal fluid phosphatase was raised by fusion of spleen cells from immunized mice with cell line Sp2/O-Ag 14 using simple method of screening for antiphosphatase antibody secreting clones. All molecular forms of catalytically active seminal fluid phosphatase and prostatic tissue phosphatase, resolved by chromatofocusing in pH gradient, react with this monoclonal antibody and with rabbit antiserum to purified seminal fluid phosphatase. Peptides of Mr 25,000 to 76,000 and of Mr 13,000 to 76,000 were adsorbed from the prostatic tissue extract and from seminal plasma on the monoclonal antibody-Sepharose column.  相似文献   

5.
Human seminal fluid was recently found to contain 18,19-dehydroprostaglandins E1 and E2 (E. H. Oliw, H. Sprecher, and M. Hamberg, (1986) J. Biol. Chem. 261, 2675-2683). In the present study, the cis and trans isomers of 18,19-dehydroprostaglandins E1 and E2 were prepared by incubation of microsomes of ram vesicular glands and glutathione with the precursor fatty acids, 8(Z),11(Z),14(Z),18(E/Z)-eicosatetraenoic acids, and 5(Z),8(Z),11(Z),14(Z),18(E/Z)-eicosapentaenoic acids, and used as references to characterize the 18,19-dehydroprostaglandins of human seminal fluid. Based on separation by reversed-phase high-performance liquid chromatography, capillary gas chromatography-mass spectrometry, and ozonolysis of the (-)-menthoxycarbonyl derivatives and on comparison with the authentic compounds, human seminal fluid was found to contain both the cis and trans isomers of 18,19-dehydroprostaglandins E1 and E2. Furthermore, human seminal fluid contained two related compounds, viz. 19,20-dehydroprostaglandins E1 and E2. The structures of these compounds were established by conversion into the corresponding prostaglandin B compounds, by mass spectrometric analysis and by chemical degradation by oxidative ozonolysis, which afforded, inter alia, 2(S)-hydroxy-adipic acid.  相似文献   

6.
During insemination, males of internally fertilizing speciestransfer a complex array of seminal fluid proteins to the femalereproductive tract. These proteins can have profound effectson female reproductive physiology and behavior and are thoughtto mediate postcopulatory sexual selection and intersexual conflict.Such selection may cause seminal fluid to evolve rapidly, withpotentially important consequences for speciation. Here we investigatethe evolution of seminal fluid proteins in a major mammalianradiation, the muroid rodents, by quantifying diversity in seminalfluid proteome composition for the first time across a broadrange of closely related species. Using comparative proteomicstechniques to identify and cross-match proteins, we demonstratethat rodent seminal fluid is highly diverse at the level ofboth proteomes and individual proteins. The striking interspecificheterogeneity in seminal fluid composition revealed by our surveyfar exceeds that seen in a second proteome of comparable complexity,skeletal muscle, indicating that the complement of proteinsexpressed in seminal fluid may be subject to rapid diversification.We further show that orthologous seminal fluid proteins exhibitsubstantial interspecific variation in molecular mass. Becausethis variation cannot be attributed to differential glycosylationor radical differences in termination sites, it is stronglysuggestive of rapid amino acid divergence. Sperm competitionis implicated in generating such divergence for at least onemajor seminal fluid protein in our study, SVS II, which is responsiblefor copulatory plug formation via transglutaminase-catalyzedcross-linking after insemination. We show that the molecularmass of SVS II is positively correlated with relative testissize across species, which could be explained by selection foran increased number of cross-linking sites involved in the formationof the copulatory plug under sperm competition.  相似文献   

7.
The relationships between the compositions of ovarian, seminal fluids and sperm function are not well known in teleostean fish species. The objective of the present study was to determine the concentration of the major inorganic ions (Na(+), K(+), Ca(2+), Mg, Cl(-)), osmolality, and pH of ovarian and seminal fluid of sexually mature chinook salmon (Oncorhynchus tshawytscha), and to determine if the composition of these fluids influences sperm motility traits (swimming speed, duration of forward mobility, swimming path trajectory, and percent motility). Cation concentrations and osmolality were significantly different in the two fluids. The ionic composition of ovarian fluid differed among individual females, and also among samples collected at different times through the spawning season. Carbonate and bicarbonate were the principal buffer ions in ovarian fluid, and its viscosity was considerably greater than that of water and was shear-dependent. The duration of forward motility (longevity) of spermatozoa, swimming speed, percent motility, and path trajectory were measured using milt from 10 males activated in the ovarian fluid from 7 females whose ion concentrations were known. No significant correlations were observed between the composition of the seminal fluid and sperm traits. However, in ovarian fluid, sperm longevity was negatively correlated with variation in [Ca(2+)] and [Mg(2+)], while percent motility increased with increasing [Mg(2+)]. These observations provide a possible chemical basis for cryptic female mate choice whereby female ovarian fluid differentially influences the behaviour of sperm from different males, and thus their fertilization success.  相似文献   

8.
Ejaculates contain sperm but also seminal fluid, which is increasingly recognized to be of central importance for reproductive success. However, a detailed biochemical composition and physiological understanding of seminal fluid is still elusive. We have used MS to identify the 57 most abundant proteins within the ejaculated seminal fluid of the honeybee Apis mellifera. Their amino acid sequences revealed the presence of diverse functional categories of enzymes, regulators and structural proteins. A number have known or predicted roles in maintaining sperm viability, protecting sperm from microbial infections or interacting with the physiology of the female. A range of putative glycoproteins or glycosylation enzymes were detected among the 57, subsequent fluorescent staining of glycolysation revealed several prominant glycoproteins in seminal fluid, while no glycoproteins were detected in sperm samples. Many of the abundant proteins that accumulate in the seminal fluid did not contain predictable tags for secretion for the cell. Comparison of the honeybee seminal fluid proteins with Drosophila seminal fluid proteins (including secreted accessory gland proteins known as ACPs), and with the human seminal fluid proteome revealed the bee protein set contains a range of newly identified seminal fluid proteins and we noted more similarity of the bee protein set with the current human seminal fluid protein set than with the known Drosophila seminal fluid proteins. The honeybee seminal fluid proteome thus represents an important addition to available data for comparative studies of seminal fluid proteomes in insects.  相似文献   

9.
The spermatic ducts and the testicular efferent ducts were investigated in different marine teleost fish species (Diplodus sargus, Mullus barbatus, Thalassoma pavo, Trachinus draco, Uranuscopus scaber, Sparisoma cretense, Synodon saurus). From the morphological, histological, fine structural and biochemical investigations it appeared that the testicular main ducts and spermatic ducts of the investigated marine fish have the following functions: storage of spermatozoa, monosacharide synthesis for nutrition of spermatozoa, synthesis of steroid glucuronides, synthesis of seminal plasma proteins, formation of a ionic gradient in the seminal fluid and phagocytotic activity. Species-specific differences were only found in the morphology of the gonads and in the histology of the spermatic duct epithelium.  相似文献   

10.
We have purified an abundant lipocalin from the seminal fluid of the rabbit, which shows significant similarity with the sub-class of pheromone carriers “urinary” and “salivary” and presents an N-terminal sequence identical with that of an odorant-binding protein (rabOBP3) expressed in the nasal tissue of the same species. This protein is synthesised in the prostate and found in the seminal fluid, but not in sperm cells. The same protein is also expressed in the nasal epithelium of both sexes, but is completely absent in female reproductive organs. It presents four cysteines, among which two are arranged to form a disulphide bridge, and is glycosylated. This is the first report of an OBP identified at the protein level in the seminal fluid of a vertebrate species. The protein purified from seminal fluid is bound to some organic chemicals whose structure is currently under investigation. We reasonably speculate that, like urinary and salivary proteins reported in other species of mammals, this lipocalin performs a dual role, as carrier of semiochemicals in the seminal fluid and as detector of chemical signals in the nose.  相似文献   

11.
Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma   总被引:4,自引:0,他引:4  
Tanaka M  Kishi Y  Takanezawa Y  Kakehi Y  Aoki J  Arai H 《FEBS letters》2004,571(1-3):197-204
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological activities and is detected in various biological fluids, including human seminal plasma. Due to its cell proliferation stimulatory and anti-apoptotic activities, LPA has been implicated in the progression of some cancers such as ovarian cancer and prostate cancer. Here, we show that prostatic acid phosphatase, which is a non-specific phosphatase and which has been implicated in the progression of prostate cancer, inactivates LPA in human seminal plasma. Human seminal plasma contains both an LPA-synthetic enzyme, lysoPLD, which converts lysophospholipids to LPA and is responsible for LPA production in serum, and its major substrate, lysophosphatidylcholine. In serum, LPA accumulated during incubation at 37 degrees C. However, in seminal plasma, LPA did not accumulate. This discrepancy is explained by the presence of a strong LPA-degrading activity. Incubation of LPA with seminal plasma resulted in the disappearance of LPA and an accompanying accumulation of monoglyceride showing that LPA is degraded by phosphatase activity present in the seminal plasma. When seminal plasma was incubated in the presence of a phosphatase inhibitor, sodium orthovanadate, LPA accumulated, indicating that LPA is produced and degraded in the fluid. Biochemical characterization of the LPA-phosphatase activity identified two phosphatase activities in human seminal plasma. By Western blotting analysis in combination with several column chromatographies, the major activity was revealed to be identical to prostatic acid phosphatase. The present study demonstrates active LPA metabolism in seminal plasma and indicates the possible role of LPA signaling in male sexual organs including prostate cancer.  相似文献   

12.
Inhibition of a tartrate-resistant acid phosphatase (ACP) from Leishmania donovani and the tartrate-sensitive ACP from human seminal fluid (prostatic ACP) was examined using a series of 13 molybdate-containing heteropolyanions. The heteropolyanions were divided into four groups based on the number of molybdenum atoms they contain: Group I, Mo4; Group II, Mo6-8; Group III, Mo12; Group IV, Mo18. Two of the four groups, those consisting of compounds that contain either an Mo4 unit or an Mo18 unit with a heteroatom in the central cavity, were potent inhibitors and exhibited the highest degree of selectivity against the leishmanial and seminal fluid ACPs. The inhibition of prostatic ACP by complex E2 could be completely reversed by dialysis. Little inhibition of the acid phosphatase, beta-glucuronidase, or alpha-mannosidase from human spleen was observed with complexes B' and E2. For the seminal fluid phosphatase, the Ki values obtained with arsenate and vanadate depended markedly on pH, suggesting that, unlike most other phosphatases, the conformation of the inhibitor binding site on human seminal fluid ACP is pH-dependent. Results of competition experiments performed with various inhibitor pairs indicated that complex D2 binds to the active site of prostatic ACP while complex M binds at some site on the enzyme that affects the active site. Binding of complex M also modifies the affinity of the enzyme for other inhibitors such as vanadate. The potency of several heteropolyanion complexes and their selective inhibition of pathophysiologically significant acid phosphatases indicate that these compounds may have value as tools for study of the structure and function of this class of enzyme and perhaps in the therapy of human disease.  相似文献   

13.
The decapacitating fraction of human seminal plasma, which strongly interacts with concanavalin A, is constituted by high mannose-type N-linked glycoproteins, most of them of less than 44 kDa. Each component with apparent molecular mass of 30, 18, and 17 kDa respectively, as judged by SDS-PAGE, was submitted to "in gel" digestion with trypsin followed by HPLC separation of the peptides and sequencing. They were characterized at microscale as gp17, an aspartyl protease that possibly contributes to liquefaction of the seminal plasma coagulum, two fragments of human acid phosphatase (17 and 30 kDa, respectively), and a 17-kDa fragment of carboxypeptidase E. Neither the fragments of prostatic acid phosphatase nor that of carboxypeptidase E had been described before in the human seminal fluid. Very weak bands, of apparent molecular masses 44 and 52 kDa, are consistent with presence of small amounts of parent compounds, prostatic acid phosphatase and carboxypeptidase E.  相似文献   

14.
19,20-Dehydro-PGE1 and 19,20-dehydro-PGE2 were recently identified in human seminal fluid. These prostaglandins might be formed by dehydration of 19(R)-hydroxy-PGE1 and 19(R)-hydroxy-PGE2 or, conceivably, by biosynthesis from precursor fatty acids with a terminal double bond. To examine the latter possibility, 5(Z), 8(Z), 11(Z), 14(Z), 19-eicosapentaenoic acid was prepared by chemical synthesis and incubated with microsomes of ram vesicular glands and glutathione (1 mM). The fatty acid was converted to 19,20-dehydro-PGE2, which was identified by GC-MS, by UV analysis after alkali treatment and by oxidative ozonolysis. The semisynthetic 19,20-dehydro-PGE2 and the corresponding compound in human seminal fluid showed the same polarity on reversed phase HPLC and virtually identical mass spectra. The described method might be used to generate 19,20-dehydro-PGE2 for evaluation of its biological effects.  相似文献   

15.
We described the ultrastructure and histochemistry of the reproductive system of five Callinectes species, and evaluate the seasonal variation in weight of the reproductive system and hepatopancreas by comparing annual changes of somatic indices. The somatic indices changed little throughout the year. In Callinectes, spermatogenesis occurs inside the lobular testes and, within each lobule, the cells are at the same developmental stage. Spermatogenesis and spermiogenesis follow the same development pattern in all Callinectes studied. Mature spermatozoa are released into the seminiferous ducts through the collecting ducts. Cells of the vas deferens are secretory as evidenced by rough endoplasmic reticulum, Golgi complex, and secretory vesicles that produce the seminal fluid. The anterior vas deferens shows two portions: proximal and distal. In proximal portion (AVDp), spermatozoa are clustered and embedded in an electron-dense, basophilic glycoproteinaceous secretion Type I. In the distal portion (AVDd), the spermatophore wall is formed by incorporation of a less electron-dense glycoproteinaceous secretion Type II. The secretion Type I change to an acid polysaccharide-rich matrix that separates the spermatophores from each other. The median vas deferens (MVD) stores the spermatophores and produces the granular glycoproteinaceous seminal fluid. The posterior vas deferens (PVD) has few spermatophores. Its epithelium has many mitochondria and the PVD seminal fluid changes into a liquid and homogeneous glycoprotein. Many outpocketings in the PVD and MVD help to increase the fluid production. Overall, the reproductive pattern of Callinectes is similar to other species that produce sperm plugs. The secretions of AVD, MVD, and PVD are responsible for the polymerization that forms the solid, waxy plug in the seminal receptacle. The traits identified here are common to all Portunidae species studied so far.  相似文献   

16.
Sperm motility in fishes. (II) Effects of ions and osmolality: a review   总被引:2,自引:0,他引:2  
The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.  相似文献   

17.
Wysocki P  Strzezek J 《Theriogenology》2003,59(3-4):1011-1025
A protein tyrosine phosphatase (PTPase) with acid phosphatase activity was purified (500-fold) from the fluid of boar seminal vesicles. Preparative purification was performed with a 3-step procedure, employing FPLC S-Sepharose Fast Flow, Mono Q and Superdex 75 column. Protein tyrosine acid phosphatase (PTAPase) was homogeneous by polyacrylamide gel electrophoresis (PAGE, SDS-PAGE). PTAPase is a glycoprotein which has a molecular weight of about 41-42 kDa. This enzyme was maximally active at pH 5.5, and its thermostability was less than 80 degrees C. The K(m) value for p-nitrophenylphosphate, a specific synthetic substrate, was 0.87 x 10(-3)M, however, higher substrate specificity was shown when phosphotyrosine (K(m)=0.37 x 10(-3)M) and protein fragments, such as gastrin (K(m)=0.0032 x 10(-3)M) and hirudin (K(m)=0.0075 x 10(-3)M), were used as substrates. Activity of PTAPase was inhibited by dephostatin, molybdate and orthovanadate by 100, 95 and 70%, respectively, when phosphotyrosine was used as the substrate. Immunofluorescence study has shown that the seminal vesicles are the only source of PTAPase in boar seminal plasma.  相似文献   

18.
Proteins in the seminal fluid of animals with internal fertilization effect numerous responses in mated females that impact both male and female fertility. Among these proteins is the highly represented class of proteolysis regulators (proteases and their inhibitors). Though proteolysis regulators have now been identified in the seminal fluid of all animals in which proteomic studies of the seminal fluid have been conducted (as well as several other species in which they have not), a unified understanding of the importance of proteolysis to male fertilization success and other reproductive processes has not yet been achieved. In this review, we provide an overview of the identification of proteolysis regulators in the seminal fluid of humans and Drosophila melanogaster, the two species with the most comprehensively known seminal fluid proteomes. We also highlight reports demonstrating the functional significance of specific proteolysis regulators in reproductive and post‐mating processes. Finally, we make broad suggestions for the direction of future research into the roles of both active seminal fluid proteolysis regulators and their inactive homologs, another significant class of seminal fluid proteins. We hope that this review aids researchers in pursuing a coordinated study of the functional significance of proteolysis regulators in semen. Mol. Reprod. Dev. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
Seminal fluid is an important part of the ejaculate of internally fertilizing animals. This fluid contains substances that nourish and activate sperm for successful fertilization. Additionally, it contains components that influence female physiology to further enhance fertilization success of the sperm donor, possibly beyond the recipient''s optimum. Although evidence for such substances abounds, few studies have unraveled their identities, and focus has been exclusively on separate-sex species. We present the first detailed study into the seminal fluid composition of a hermaphrodite (Lymnaea stagnalis). Eight novel peptides and proteins were identified from the seminal-fluid-producing prostate gland and tested for effects on oviposition, hatching and consumption. The gene for the protein found to suppress egg mass production, Ovipostatin, was sequenced, thereby providing the first fully-characterized seminal fluid substance in a simultaneous hermaphrodite. Thus, seminal fluid peptides and proteins have evolved and can play a crucial role in sexual selection even when the sexes are combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号