首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein–lipid–detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.  相似文献   

2.
Novel crystalline sheets of Na,K-ATPase induced by phospholipase A2   总被引:1,自引:0,他引:1  
Treatment of purified preparations of Na,K-ATPase by phospholipase A2 has led to the formation of two-dimensional crystals of the protein. Control tests with another phospholipase and two detergents have shown that crystallization occurs as the result of hydrolysis and/or solubilization of the phospholipids in the enzyme vesicles. Experimentation with various buffer systems has indicated that reduction in the amount of phospholipids alone is sufficient for inducing the formation of crystalline sheets. Inclusion of crystal inducing ions in the buffer facilitates the crystallization process, resulting in more extensive arrays. The new crystalline sheets are exclusively dimeric with average unit cell dimensions: a = 15.8 +/- 0.4 nm, b = 4.9 +/- 0.2 nm, and gamma = 64 +/- 3 degrees. Examination of the micrographs shows that the initial intermolecular interaction leading to the formation of sheets is between the alpha subunits. Results from this study suggest that removal and/or modification of phospholipids by phospholipases could prove successful in crystallizing those membrane proteins in which excess lipid is the main barrier to the formation of two-dimensional arrays.  相似文献   

3.
Large two-dimensional crystals of H+-ATPase, a 100 kDa integral membrane protein, were grown directly onto the carbon surface of an electron microscope grid. This procedure prevented the fragmentation that is normally observed upon transfer of the crystals from the air-water interface to a continuous carbon support film. Crystals grown by this method measure approximately 5 microm across and have a thickness of approximately 240 A. They are of better quality than the monolayers previously obtained at the air-water interface, yielding structure factors to at least 8 A in-plane resolution by electron image processing. Unlike most other two-dimensional crystals of membrane proteins they do not contain a lipid bilayer, but consist of detergent-protein micelles of H+-ATPase hexamers tightly packed on a trigonal lattice. The crystals belong to the two-sided plane group p321 (a=b=165 A), containing two layers of hexamers related by an in-plane axis of 2-fold symmetry. The protein is in contact with the carbon surface through its large, hydrophilic 70 kDa cytoplasmic portion, yet due to the presence of detergent in the crystallizing buffer, the hydrophobicity of the carbon surface does not appear to affect crystal formation. Surface crystallisation may be a useful method for other proteins which form fragile two-dimensional crystals, in particular if conditions for obtaining three-dimensional crystals are known, but their quality or stability is insufficient for X-ray structure determination.  相似文献   

4.
Structural and functional information of membrane proteins at ever-increasing resolution is being obtained by electron crystallography. While a large amount of work on the development of methods for electron microscopy and image processing has resulted in tremendous advances in terms of speed of data collection and resolution, general guidelines for crystallization are first starting to emerge. Yet two-dimensional crystallization itself will always remain the limiting factor of this powerful approach in structural biology. Two-dimensional crystallization through detergent removal by dialysis is the most widely used technique. Four main factors need to be considered for the dialysis method: the protein preparation, the detergent, the lipid added as well as any constituent lipid, and the buffer conditions. Equally important is proper and careful screening to identify two-dimensional crystals.  相似文献   

5.
High-resolution structural data of membrane proteins can be obtained by studying 2D crystals by electron crystallography. Finding the right conditions to produce these crystals is one of the major bottlenecks encountered in 2D crystallography. Many reviews address 2D crystallization techniques in attempts to provide guidelines for crystallographers. Several techniques including new approaches to remove detergent like the biobeads technique and the development of dedicated devices have been described (dialysis and dilution machines). In addition, 2D crystallization at interfaces has been studied, the most prominent method being the 2D crystallization at the lipid monolayer. A new approach based on detergent complexation by cyclodextrins is presented in this paper. To prove the ability of cyclodextrins to remove detergent from ternary mixtures (lipid, detergent and protein) in order to get 2D crystals, this method has been tested with OmpF, a typical beta-barrel protein, and with SoPIP2;1, a typical alpha-helical protein. Experiments over different time ranges were performed to analyze the kinetic effects of detergent removal with cyclodextrins on the formation of 2D crystals. The quality of the produced crystals was assessed with negative stain electron microscopy, cryo-electron microscopy and diffraction. Both proteins yielded crystals comparable in quality to previous crystallization reports.  相似文献   

6.
A great interest exists in producing and/or improving two-dimensional (2D) crystals of membrane proteins amenable to structural analysis by electron crystallography. Here we report on the use of the detergent n-octyl beta-d-thioglucopyranoside in 2D crystallization trials of membrane proteins with radically different structures including FhuA from the outer membrane of Escherichia coli, light-harvesting complex II from Rubrivivax gelatinosus, and Photosystem I from cyanobacterium Synechococcus sp. We have analyzed by electron microscopy the structures reconstituted after detergent removal from lipid-detergent or lipid-protein-detergent micellar solutions containing either only n-octyl beta-d-thioglucopyranoside or n-octyl beta-d-thioglucopyranoside in combination with other detergents commonly used in membrane protein biochemistry. This allowed the definition of experimental conditions in which the use of n-octyl beta-d-thioglucopyranoside could induce a considerable increase in the size of reconstituted membrane structures, up to several micrometers. An other important feature was that, in addition to reconstitution of membrane proteins into large bilayered structures, this thioglycosylated detergent also was revealed to be efficient in crystallization trials, allowing the proteins to be analyzed in large coherent two-dimensional arrays. Thus, inclusion of n-octyl beta-d-thioglucopyranoside in 2D crystallization trials appears to be a promising method for the production of large and coherent 2D crystals that will be valuable for structural analysis by electron crystallography and atomic force microscopy.  相似文献   

7.
Integral membrane proteins carry out some of the most important functions of living cells, yet relatively few details are known about their structures. This is due, in large part, to the difficulties associated with preparing membrane protein crystals suitable for X-ray diffraction analysis. Mechanistic studies of membrane protein crystallization may provide insights that will aid in determining future membrane protein structures. Accordingly, the solution behavior of the bacterial outer membrane protein OmpF porin was studied by static light scattering under conditions favorable for crystal growth. The second osmotic virial coefficient (B22) was found to be a predictor of the crystallization behavior of porin, as has previously been found for soluble proteins. Both tetragonal and trigonal porin crystals were found to form only within a narrow window of B22 values located at approximately -0.5 to -2 X 10(-4) mol mL g(-2), which is similar to the "crystallization slot" observed for soluble proteins. The B22 behavior of protein-free detergent micelles proved very similar to that of porin-detergent complexes, suggesting that the detergent's contribution dominates the behavior of protein-detergent complexes under crystallizing conditions. This observation implies that, for any given detergent, it may be possible to construct membrane protein crystallization screens of general utility by manipulating the solution properties so as to drive detergent B22 values into the crystallization slot. Such screens would limit the screening effort to the detergent systems most likely to yield crystals, thereby minimizing protein requirements and improving productivity.  相似文献   

8.
Electron microscopy of two-dimensional (2D) crystals has demonstrated potential for structure determination of membrane proteins. Technical limitations in large-scale crystallization screens have, however, prevented a major breakthrough in the routine application of this technology. Dialysis is generally used for detergent removal and reconstitution of the protein into a lipid bilayer, and devices for testing numerous conditions in parallel are not readily available. Furthermore, the small size of resulting 2D crystals requires electron microscopy to evaluate the results and automation of the necessary steps is essential to achieve a reasonable throughput. We have designed a crystallization block, using standard microplate dimensions, by which 96 unique samples can be dialyzed simultaneously against 96 different buffers and have demonstrated that the rate of detergent dialysis is comparable to those obtained with conventional dialysis devices. A liquid-handling robot was employed to set up 2D crystallization trials with the membrane proteins CopA from Archaeoglobus fulgidus and light-harvesting complex II (LH2) from Rhodobacter sphaeroides. For CopA, 1 week of dialysis yielded tubular crystals and, for LH2, large and well-ordered vesicular 2D crystals were obtained after 24 h, illustrating the feasibility of this approach. Combined with a high-throughput procedure for preparation of EM-grids and automation of the subsequent negative staining step, the crystallization block offers a novel pipeline that promises to speed up large-scale screening of 2D crystallization and to increase the likelihood of producing well-ordered crystals for analysis by electron crystallography.  相似文献   

9.
Levy D  Chami M  Rigaud JL 《FEBS letters》2001,504(3):187-193
Due to the difficulty to crystallize membrane proteins, there is a considerable interest to intensify research topics aimed at developing new methods of crystallization. In this context, the lipid layer crystallization at the air/water interface, used so far for soluble proteins, has been recently adapted successfully to produce two-dimensional (2D) crystals of membrane proteins, amenable to structural analysis by electron crystallography. Besides to represent a new alternative strategy, this approach gains the advantage to decrease significantly the amount of material needed in incubation trials, thus opening the field of crystallization to those membrane proteins difficult to surexpress and/or purify. The systematic studies that have been performed on different classes of membrane proteins are reviewed and the physico-chemical processes that lead to the production of 2D crystals are addressed. The different drawbacks, advantages and perspectives of this new strategy for providing structural information on membrane proteins are discussed.  相似文献   

10.
One of the major challenges facing structural biologists today is the determination of high-resolution 3D structures of membrane proteins. The requirement for detergent molecules to be present makes X-ray crystallography particularly difficult, coupled with the added problems of isolating sufficient (viable) protein samples at high enough concentrations to yield 3D crystals. One technique that enables structural determination with fewer constraints is electron crystallography of two-dimensional crystals, in which small amounts of membrane proteins can be studied in native form in lipid bilayers.  相似文献   

11.
The major barrier responsible for the slow pace of structure determination of integral membrane proteins is the difficulty of crystallizing detergent-solubilized hydrophobic proteins, particularly hetero-oligomeric integral membrane proteins. For the latter class of multi-subunit proteins, we have encountered the following problems in addition to the ubiquitous problem of detergent compatibility: (i) instability caused by over-purification that results in delipidation; (ii) protease activity degrading exposed loops and termini of subunits of the complex that could not be inhibited; (iii) poor protein–protein contacts presumably arising from masking by the detergent micelle. Problem (i) could be ameliorated in crystallization of the cytochrome b6f complex by augmenting the delipidated complex with synthetic lipid. Problem (ii) has not been solved. Problem (iii) has been solved in other systems by the use of monoclonal antibodies (or other protein ligands) to increase the probability of protein–protein contacts. In the case of the complex formed by the cobalamin and colicin receptor, BtuB, and the receptor binding domain of colicin E3, the latter served as a ligand for protein–protein contacts that facilitated crystallization.  相似文献   

12.
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.  相似文献   

13.
Monolayer of functionalized lipid spread at the air/water interface is used for the structural analysis of soluble and membrane proteins by electron crystallography and single particle analysis. This powerful approach lacks of a method for the screening of the binding of proteins to the surface of the lipid layer. Here, we described an optical method based on the use of reflected light microscopy to image, without the use of any labeling, the lipid layer at the surface of buffers in the Teflon wells used for 2D crystallization. Images revealed that the lipid layer was made of a monolayer coexisting with liposomes or aggregates of lipids floating at the surface. Protein binding led to an increase of the contrast and the decrease of the fluidity of the lipid surface, as demonstrated with the binding of soluble Shiga toxin B subunit, of purple membrane and of solubilized His-BmrA, a bacterial ABC transporter. Moreover the reconstitution of membrane proteins bound to the lipidic surface upon detergent removal can be followed through the appearance of large recognizable domains at the surface. Proteins binding and reconstitution were further confirmed by electron microcopy. Overall, this method provides a quick evaluation of the monolayer trials, a significant reduction in screening by transmission electron microscopy and new insights in the proteins binding and 2D crystallogenesis at the lipid surface.  相似文献   

14.
Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7A resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date.  相似文献   

15.
Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7 Å resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date.  相似文献   

16.
Three-dimensional crystals were obtained for the membrane domain of the human erythrocyte anion exchanger (AE1, Band 3). Protein homogeneity and stability and the delicate balance between the detergent used and the amount of phospholipids copurifying are critical to the formation of three-dimensional crystals of the AE1 membrane domain. While deglycosylation improved the protein homogeneity, its stability was significantly increased by inhibitor binding. Size-exclusion chromatography showed that the protein was monodisperse in detergents with acyl chains of 10-12 carbons over a pH range of 5.5-10.0. This pH range and the detergents that retained the protein's monodispersity were used for crystallization screening. Crystals were obtained with the protein purified in C(12)E(8), dodecylmaltoside, decylthiomaltoside, and cyclohexyl-hexylmaltoside. Five to 13 lipid molecules per protein were required for the protein crystal formation. Those crystals grown in dodecylmaltoside diffracted X-rays to 14 A. With these factors taken into consideration, ways to further improve the crystal quality are suggested.  相似文献   

17.
By using Bio-Beads as a detergent-removing agent, it has been possible to produce detergent-depleted two-dimensional crystals of purified Ca-ATPase. The crystallinity and morphology of these different crystals were analyzed by electron microscopy under different experimental conditions. A lipid-to-protein ratio below 0.4 w/w was required for crystal formation. The rate of detergent removal critically affected crystal morphology, and large multilamellar crystalline sheets or wide unilamellar tubes were generated upon slow or fast detergent removal, respectively. Electron crystallographic analysis indicated unit cell parameters of a = 159 A, b = 54 A, and gamma = 90 degrees for both types of crystals, and projection maps at 15-A resolution were consistent with Ca-ATPase molecules alternately facing the two sides of the membrane. Crystal formation was also affected by the protein conformation. Indeed, tubular and multilamellar crystals both required the presence of Ca2+; the presence of ADP gave rise to another type of packing within the unit cell (a = 86 A, b = 77 A, and gamma = 90 degrees), while maintaining a bipolar orientation of the molecules within the bilayer. All of the results are discussed in terms of nucleation and crystal growth, and a model of crystallogenesis is proposed that may be generally true for asymmetrical proteins with a large hydrophilic cytoplasmic domain.  相似文献   

18.
Although being much smaller than the number of soluble proteins in the Protein Data Bank, the number of membrane proteins therein now approaches 700, and a statistical analysis becomes meaningful. Such an analysis showed that the conventional subdivision into monotopic, β-barrel and α-helical membrane proteins is appropriate but should be amended by a classification according to the detergent micelle structure in the crystal, which can be derived from the packing of the membrane-immersed parts of the proteins. The crystal packing density is specific for the three conventional types of membrane proteins and soluble proteins. It is also specific for three observed detergent arrangements that are micelle pockets, micelle filaments and micelle sheets, demonstrating that the detergent structure affects crystallization. The packing density distribution of crystals from integral membrane proteins has approximately the same shape as that of soluble proteins but is by a factor of two broader and shifted to lower density. It seems unlikely that the differences can be explained by a mere solvent expansion due to the required detergent. The crystallized membrane proteins were further analyzed with respect to protein mass, oligomerization and crystallographic asymmetric unit, space group, crystal ordering and symmetry. The results provide a new view on membrane proteins.  相似文献   

19.
This study describes the use of brominated phospholipids to distinguish between lipid and detergent binding sites on the surface of a typical alpha-helical membrane protein. Reaction centers isolated from Rhodobacter sphaeroides were cocrystallized with added brominated phospholipids. X-ray structural analysis of these crystals has revealed the presence of two lipid binding sites from the characteristic strong X-ray scattering from the bromine atoms. These results demonstrate the usefulness of this approach to mapping lipid binding sites at the surface of membrane proteins.  相似文献   

20.
Translocator protein TSPO is a membrane protein highly conserved in evolution which does not belong to any structural known family. TSPO is involved in physiological functions among which transport of molecules such as cholesterol to form steroids and bile salts in mammalian cells. Membrane protein structure determination remains a difficult task and needs concomitant approaches (for instance X-ray- or Electron-crystallography and NMR). Electron microscopy and two-dimensional crystallization under functionalized monolayers have been successfully developed for recombinant tagged proteins. The difficulty comes from the detergent carried by membrane proteins that disrupt the lipid monolayer. We identified the best conditions for injecting the histidine tagged recombinant TSPO in detergent in the subphase and to keep the protein stable. Reconstituted recombinant protein into a lipid bilayer favors its adsorption to functionalized monolayers and limits the disruption of the monolayer by reducing the amount of detergent. Finally, we obtained the first transmission electron microscopy images of recombinant mouse TSPO negatively stained bound to the lipid monolayer after injection into the subphase of pre-reconstituted TSPO in lipids. Image analysis reveals that circular objects could correspond to an association of at least four monomers of mouse TSPO. The different amino acid compositions and the location of the polyhistidine tag between bacterial and mouse TSPO could account for the formation of dimer versus tetramer, respectively. The difference in the loop between the first and second putative transmembrane domain may contribute to distinct monomer interaction, this is supported by differences in ligand binding parameters and biological functions of both proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号