首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paralytic shellfish toxins produced by dinoflagellates are known to deter copepod grazing. Dinoflagellate species, including Protoceratium reticulatum, also produce disulfated polyether yessotoxins that were previously referred to as diarrheic shellfish toxins. However, the role of yessotoxins in predator–prey relationships is not yet clear. In the present study, the effects of purified yessotoxin (YTX) on feeding activities of Acartia hudsonica (Copepoda, Calanoida) were experimentally investigated. Polystyrene fluorescent microspheres (10 μm in diameter) colored bright blue or yellow-green were coated with cell extracts of P. reticulatum that do not produce yessotoxins. The bright blue microspheres were further coated with YTX, and the yellow-green microspheres were used as the reference. The microspheres were then given to the copepods separately or in combination to measure clearance rates and feeding selectivity. A. hudsonica was found to feed on the yellow-green microspheres without YTX at twice the rate of the bright blue microspheres with YTX. We also confirmed that microsphere color per se did not affect the feeding rates. The bright blue microspheres adsorbed 1.8–43.3 pg of YTX per microsphere, which is similar to the cell-specific yessotoxin content of toxic P. reticulatum found in natural environments. These results suggest that production of yessotoxin is advantageous for P. reticulatum by deterring predation by copepods.  相似文献   

2.
The functional response of a planktonic ciliate, Strombidium sp. feeding on the dinoflagellate Pfiesteria piscicida non-toxic zoospores (NTZ) was experimentally studied with four different prey concentrations (43–3153 cells ml−1). Data from direct observations (NTZ inside individual Strombidium sp.) was used to calculate predator–prey specific ingestion and clearance rates. The ingestion rates varied between 0.68 and 14.26 NTZ ind−1 h−1, and with the predator–prey specific handling time of 2.83 min the Umax was 21.18 NTZ ind−1 h−1. The increase in the prey concentration between approximately 700 and 3000 NTZ ml−1 did not increase the uptake of prey, and at the lowest Pfiesteria NTZ concentrations the feeding efficiency of Strombidium sp. was lowered, possibly indicating a situation of threshold feeding. When data from direct observations of ingested Pfiesteria NTZ were compared with values of total NTZ loss from the experimental water during the experiment, ingestion was found to represent only a fraction of the total NTZ loss in the presence of ciliates. This discrepancy was concluded to be due to other grazer related factors than actual ciliate grazing. The control of the initial growth of Pfiesteria community, in a pre-bloom situation, would require only a small ciliate abundance (less than 5 ml−1), but when the Pfiesteria NTZ are scarce, relatively more ciliates are needed to limit the population growth of the dinoflagellate community because of the apparent feeding threshold. It is concluded that the formation of non-toxic P. piscicida blooms require periods of low grazing pressure or a means to escape grazing.  相似文献   

3.
Variability has been reported in the toxicity potential of Pfiesteria piscicida that is partly a function of the history of exposure to live fish. Grazing properties of P. piscicida and its susceptibility to ciliate predation were compared in three functional types or toxicity states of this species: actively toxic cultures, cultures with temporary loss of demonstrable toxicity, and cultures with no demonstrable toxicity. Pronounced differences in predator–prey interactions were found between actively toxic cultures and cultures with reduced toxicity. When grown with Rhodomonas sp. (Cryptophyceae) prey, specific growth rates were relatively low in actively toxic cultures under both relatively high and low irradiances. In the cultures with reduced toxicity, prey chloroplast material was apparent in nearly 100% of dinoflagellate cells 3 h after feeding, while chloroplast inclusions were found in <40% of actively toxic cells for ≤16 h (high light) and ≤23 h (low light). These results suggest a relatively high reliance on phagotrophic carbon assimilation and more rapid response to algal prey availability in Pfiesteria cells with lower toxicity. Grazing by two euplotid benthic ciliates (Euplotes vannus and E. woodruffi) on P. piscicida also varied among functional types. Grazing on actively toxic P. piscicida cells did not occur, whereas net positive ingestion rates were calculated for the other prey cultures. These results support concurrent experimental findings that a natural assemblage of microzooplankton displayed lower grazing potential on actively toxic P. piscicida than on cultures with reduced toxicity. In summary, pronounced differences in trophic interactions were found between actively toxic cultures and those with reduced or undetectable toxicity, providing additional evidence of the importance of cellular toxicity in the trophic ecology of Pfiesteria.  相似文献   

4.
The re-emergence of Gymnodinum catenatum blooms after a 10 year hiatus of absence initiated the present investigation. This study aims to evaluate the exposure of small pelagic fishes to paralytic shellfish toxins (PST) during blooms of G. catenatum. Sardines (Sardina pilchardus) were selected as a representative fish species. In order to assess toxin availability to fish, both intracellular PSTs (toxin retained within the algal cells) and extracellular PSTs (toxin found in seawater outside algal cells) were quantified, as well as toxin levels within three fish tissue matrices (viscera, muscle and brain). During the study period, the highest cell densities of G. catenatum reached 2.5 × 104 cells l−1 and intracellular PST levels ranged from 3.4 to 398 ng STXeq l−1 as detected via an enzyme linked immunosorbent assay (ELISA). Measurable extracellular PSTs were also detected in seawater (0.2–1.1 μg STXeq l−1) for the first time in Atlantic waters. The PST profile in G. catenatum was determined via high performance liquid chromatography with fluorescence detection (HPLC-FLD) and consisted mostly of sulfocarbamoyl (C1+2, B1) and decarbamoyl (dcSTX, dcGTX2+3, dcNEO) toxins. The observed profile was similar to that reported previously in G. catenatum blooms in this region before the 10-year hiatus. Sardines, planktivorous fish that ingest a large number of phytoplankton cells, were found to contain PSTs in the viscera, reaching a maximum of 531 μg STXeq kg−1. PSTs were not detected in corresponding muscle or brain tissues. The PST profile characterized in sardine samples consisted of the same sulfocarbamoyl and decarbamoyl toxins found in the algal prey with minor differences in relative abundance of each toxin. Overall, the data suggest that significant biotransformation of PSTs does not occur in sardines. Therefore, planktivorous fish may be a good tracer for the occurrence of offshore G. catenatum blooms and the associated PSTs produced by these algae.  相似文献   

5.
Karlodinium veneficum is a common member of temperate, coastal phytoplankton assemblages that occasionally forms blooms associated with fish kills. Here, we tested the hypothesis that the cytotoxic and ichthyotoxic compounds produced by K. veneficum, karlotoxins, can have anti-grazing properties against the heterotrophic dinoflagellate, Oxyrrhis marina. The sterol composition of O. marina (>80% cholesterol) renders it sensitive to karlotoxin, and does not vary substantially when fed different algal diets even for prey that are resistant to karlotoxin. At in situ bloom concentrations (104–105 K. veneficum ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 55% that observed on the non-toxic K. veneficum strain MD5. At lower prey concentrations typical of in situ non-bloom levels (<103 cells ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 70–80% of rates on non-toxic strain MD5. Growth of O. marina was significantly suppressed when fed the toxic strain of K. veneficum. Experiments with mixed prey cultures, where non-toxic strain MD5 was fluorescently stained, showed that the presence of toxic strain CCMP 2064 inhibited grazing of O. marina on the co-occurring non-toxic strain MD5. Exogenous addition of a sub-lethal dose (100 ng ml−1) of purified karlotoxin inhibited grazing of O. marina by approximately 50% on the non-toxic K. veneficum strain MD5 or the cryptophyte S. major. These results identify karlotoxin as an anti-grazing compound for those grazers with appropriate sterol composition (i.e., desmethyl sterols). This strategy is likely to be an important mechanism whereby growth of K. veneficum is uncoupled from losses due to grazing, allowing it to form ichthyotoxic blooms in situ.  相似文献   

6.
Phenotypic tolerance of individual copepods to paralytic shellfish toxins (PSTs), as determined by fecundity, has recently been reported. In the present study, we tested whether similar phenotypic tolerance related to ingestion also exists. In short-term feeding assays, ingestion rates of individual females of the copepod Acartia hudsonica were measured on a sole diet of toxic Alexandrium fundyense as well as on a sole diet of nontoxic Alexandrium tamarense. When copepods fed on A. fundyense, the frequency distribution of ingestion rates was polymodal, consistent with the hypothesis of levels of phenotypic tolerance associated with toxin ingestion. Four distinct groups of ingestion rates on toxic algae were observed. Mean rates ranged from near zero to more than 100 cells copepod−1 h−1. In contrast, when the same individuals fed on the nontoxic A. tamarense diet, the polymodal distribution of ingestion rates was not apparent. Furthermore, group-specific mean ingestion rates, for two ingestion-defined groups, were always significantly greater on the toxic diet than they were on the nontoxic diet. These results support the hypothesis that discrete groups of grazer ingestion of toxic A. fundyense are related to PST tolerance.  相似文献   

7.
Zooplankton responses to toxic algae are highly variable, even towards taxonomically closely related species or different strains of the same species. Here, the individual level feeding behavior of a copepod, Temora longicornis, was examined which offered 4 similarly sized strains of toxic dinoflagellate Alexandrium spp. and a non-toxic control strain of the dinoflagellate Protoceratium reticulatum. The strains varied in their cellular toxin concentration and composition and in lytic activity. High-speed video observations revealed four distinctly different strain-specific feeding responses of the copepod during 4 h incubations: (i) the ‘normal’ feeding behavior, in which the feeding appendages were beating almost constantly to produce a feeding current and most (90%) of the captured algae were ingested; (ii) the beating activity of the feeding appendages was reduced by ca. 80% during the initial 60 min of exposure, after which very few algae were captured and ingested; (iii) capture and ingestion rates remained high, but ingested cells were regurgitated; and (iv) the copepod continued beating its appendages and captured cells at a high rate, but after 60 min, most captured cells were rejected. The various prey aversion responses observed may have very different implications to the prey and their ability to form blooms: consumed but regurgitated cells are dead, captured but rejected cells survive and may give the prey a competitive advantage, while reduced feeding activity of the grazer may be equally beneficial to the prey and its competitors. These behaviors were not related to lytic activity or overall paralytic shellfish toxins (PSTs) content and composition and suggest that other cues are responsible for the responses.  相似文献   

8.
Few protistan grazers feed on toxic dinoflagellates, and low grazing pressure on toxic dinoflagellates allows these dinoflagellates to form red‐tide patches. We explored the feeding ecology of the newly described heterotrophic dinoflagellate Gyrodinium moestrupii when it fed on toxic strains of Alexandrium minutum, Alexandrium tamarense, and Karenia brevis and on nontoxic strains of A. tamarense, Prorocentrum minimum, and Scrippsiella trochoidea. Specific growth rates of G. moestrupii feeding on each of these dinoflagellates either increased continuously or became saturated with increasing mean prey concentration. The maximum specific growth rate of G. moestrupii feeding on toxic A. minutum (1.60/d) was higher than that when feeding on nontoxic S. trochoidea (1.50/d) or P. minimum (1.07/d). In addition, the maximum growth rate of G. moestrupii feeding on the toxic strain of A. tamarense (0.68/d) was similar to that when feeding on the nontoxic strain of A. tamarense (0.71/d). Furthermore, the maximum ingestion rate of G. moestrupii on A. minutum (2.6 ng C/grazer/d) was comparable to that of S. trochoidea (3.0 ng C/grazer/d). Additionally, the maximum ingestion rate of G. moestrupii on the toxic strain of A. tamarense (2.1 ng C/grazer/d) was higher than that when feeding on the nontoxic strain of A. tamarense (1.3 ng C/grazer/d). Thus, feeding by G. moestrupii is not suppressed by toxic dinoflagellate prey, suggesting that it is an effective protistan grazer of toxic dinoflagellates.  相似文献   

9.
10.
Alexandrium minutum is a globally distributed harmful algal bloom species with many strains that are known to produce paralytic shellfish toxins (PSTs) and consequently represent a concern to human and ecosystem health. This review highlights that A. minutum typically occurs in sheltered locations, with cell growth occurring during periods of stable water conditions. Sediment characteristics are important in the persistence of this species within a location, with fine sediments providing cyst deposits for ongoing inoculation to the water column. Toxic strains of A. minutum do not produce a consistent toxin profile, different populations produce a range of PSTs in differing quantities. Novel cluster analysis of published A. minutum toxin profiles indicates five PST profile clusters globally. Some clusters are grouped geographically (Northern Europe) while others are widely spread. Isolates from Taiwan have a range of toxin profile clusters and this area appears to have the most diverse set of PST producing A. minutum populations. These toxin profiles indicate that within the United Kingdom there are two populations of A. minutum grouping with strains from Northern France and Southern Ireland. There is a degree of interconnectivity in this region due to oceanic circulation and a high level of shipping and recreational boating. Further research into the interrelationships between the A. minutum populations in this global region would be of value.  相似文献   

11.
Transmission plays an integral part in the intimate relationship between a host insect and its pathogen that can be altered by abiotic or biotic factors. The latter include other pathogens, parasitoids, or predators. Ants are important species in food webs that act on various levels in a community structure. Their social behavior allows them to prey on and transport larger prey, or they can dismember the prey where it was found. Thereby they can also influence the horizontal transmission of a pathogen in its host's population. We tested the hypothesis that an ant species like Formica fusca L. (Hymenoptera: Formicidae) can affect the horizontal transmission of two microsporidian pathogens, Nosema lymantriae Weiser (Microsporidia: Nosematidae) and Vairimorpha disparis (Timofejeva) (Microsporidia: Burenellidae), infecting the gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae: Lymantriinae). Observational studies showed that uninfected and infected L. dispar larvae are potential prey items for F. fusca. Laboratory choice experiments led to the conclusion that F. fusca did not prefer L. dispar larvae infected with N. lymantriae and avoided L. dispar larvae infected with V. disparis over uninfected larvae when given the choice. Experiments carried out on small potted oak, Quercus petraea (Mattuschka) Liebl. (Fagaceae), saplings showed that predation of F. fusca on infected larvae did not significantly change the transmission of either microsporidian species to L. dispar test larvae. Microscopic examination indicated that F. fusca workers never became infected with N. lymantriae or V. disparis after feeding on infected prey.  相似文献   

12.
Takayama spp. are phototrophic dinoflagellates belonging to the family Kareniaceae and have caused fish kills in several countries. Understanding their trophic mode and interactions with co-occurring phytoplankton species are critical steps in comprehending their ecological roles in marine ecosystems, bloom dynamics, and dinoflagellate evolution. To investigate the trophic mode and interactions of Takayama spp., the ability of Takayama helix to feed on diverse algal species was examined, and the mechanisms of prey ingestion were determined. Furthermore, growth and ingestion rates of T. helix feeding on the dinoflagellates Alexandrium lusitanicum and Alexandrium tamarense, which are two optimal prey items, were determined as a function of prey concentration. T. helix ingested large dinoflagellates ≥15 μm in size, except for the dinoflagellates Karenia mikimotoi, Akashiwo sanguinea, and Prorocentrum micans (i.e., it fed on Alexandrium minutum, A. lusitanicum, A. tamarense, A. pacificum, A. insuetum, Cochlodinium polykrikoides, Coolia canariensis, Coolia malayensis, Gambierdiscus caribaeus, Gymnodinium aureolum, Gymnodinium catenatum, Gymnodinium instriatum, Heterocapsa triquetra, Lingulodinium polyedrum, and Scrippsiella trochoidea). All these edible prey items are dinoflagellates that have diverse eco-physiology such as toxic and non-toxic, single and chain forming, and planktonic and benthic forms. However, T. helix did not feed on small flagellates and dinoflagellates <13 μm in size (i.e., the prymnesiophyte Isochrysis galbana; the cryptophytes Teleaulax sp., Storeatula major, and Rhodomonas salina; the raphidophyte Heterosigma akashiwo; the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum minimum; or the small diatom Skeletonema costatum). T. helix ingested Heterocapsa triquetra by direct engulfment, but sucked materials from the rest of the edible prey species through the intercingular region of the sulcus. With increasing mean prey concentration, the specific growth rates of T. helix on A. lusitanicum and A. tamarense increased continuously before saturating at prey concentrations of 336–620 ng C mL−1. The maximum specific growth rates (mixotrophic growth) of T. helix on A. lusitanicum and A. tamarense were 0.272 and 0.268 d−1, respectively, at 20 °C under a 14:10 h light/dark cycle of 20 μE m−2 s−1 illumination, while its growth rates (phototrophic growth) under the same light conditions without added prey were 0.152 and 0.094 d−1, respectively. The maximum ingestion rates of T. helix on A. lusitanicum and A. tamarense were 1.23 and 0.48 ng C predator−1d−1, respectively. The results of the present study suggest that T. helix is a mixotrophic dinoflagellate that is able to feed on a diverse range of toxic species and, thus, its mixotrophic ability should be considered when studying red tide dynamics, food webs, and dinoflagellate evolution.  相似文献   

13.
There are at least 40,000 species of microalgae in the aquatic environment. Fifteen species of marine dinoflagellates and freshwater cyanobacteria are known to produce paralytic shellfish toxins (PSTs) and represent a threat to human and/or livestock health. Although known toxic species are regularly monitored, the wider cross‐section of microalgae has not been systematically tested for PSTs. Advances in rapid screening techniques have resulted in the development of highly sensitive and specific methods to detect PSTs, including the sodium channel and saxiphilin binding assays. These assays were used in this study in 96‐well formats to screen 234 highly diverse isolates of Australian freshwater and marine microalgae for PSTs. The screening assays detected five toxic species, representing one freshwater cyanobacterium (Anabaena circinalis Rabenhorst) and four species of marine dinoflagellates (Alexandrium minutum Halim, A. catenella Balech, A. tamarense Balech, and Gymnodinium catenatum Graham). Liquid chromatography‐fluorescence detection was used to identify 14 saxitoxin analogues across the five species, and each species exhibited distinct toxin profiles. These results indicate that PST production is restricted to a narrow range of microalgal species found in Australian waters.  相似文献   

14.
We investigated seasonal variation of grazing impact of the pigmented nanoflagellates (PNF) with different sizes upon Synechococcus in the subtropical western Pacific coastal waters using grazing experiments with fluorescently labeled Synechococcus (FLS). For total PNF, conspicuous seasonal variations of ingestion rates on Synechococcus were found, and a functional response was observed. To further investigate the impact of different size groups, we separated the PNF into four categories (<3, 3–5, 5–10, and >10 μm). Our results indicated that the smallest PNF (<3 μm PNF) did not ingest FLS and was considered autotrophic. PNF of 3–5 μm in size made up most of the PNF community; however, their ingestion on Synechococcus was too low (0.1–1.9 Syn PNF−1 h−1) to support their growth, and they had to depend on other prey or photosynthesis to survive. The ingestion rate of the 3–5 μm group exhibited no significant seasonal variation; by contrast, the ingestion rates of 5–10 and >10 μm PNFs showed significant seasonal variation. During the warm season, 3–5 μm PNF were responsible for the grazing of 12% of Synechococcus production, 5–10 μm PNF for 48%, and >10 μm PNF for 2%. Taken together, our results demonstrate that the PNF of 3–10 μm consumed most Synechococcus during the warm season and exhibited a significant functional response to the increase in prey concentration.  相似文献   

15.
Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.  相似文献   

16.
An experiment was conducted to follow the fate of the cyanobacterial toxin, nodularin, produced by Nodularia spumigena through ingestion by Mytilus edulis and re-ingestion of faecal material (coprophagy). Mussels were fed with cultures of N. spumigena, and the faeces that were produced were fed to other mussels not previously exposed to N. spumigena. Concentrations of nodularin were measured in the food (N. spumigena), the mussels and in the faeces in order to make a toxin budget. High concentrations of nodularin were found in the mussels and their faeces after 48 h incubation with N. spumigena. When the toxic faeces were fed to new mussels, the toxin content of faeces was reduced from 95 μg nod g−1 dry weight (DW) to 1 μg nod g−1 DW through the process of coprophagy. Hence, when toxic faeces were fed to mussels, the nodularin concentration of the resulting faecal material was reduced by 99%. Pseudofaeces were produced when the mussels were grazing on N. spumigena, but not when grazing on faeces. The pseudofaeces contained high concentrations of nodularin and apparently intact N. spumigena cells. However, these cells were growth-inhibited and their potential contribution to seeding a bloom is probably limited. Our data indicate that a large fraction of ingested nodularin in M. edulis is egested with the faeces, and that the concentration of nodularin in the faeces is reduced when faeces are re-ingested.  相似文献   

17.
18.
To investigate harmful effects of the dinoflagellate Alexandrium species on microzooplankton, the rotifer Brachionus plicatilis was chosen as an assay species, and tested with 10 strains of Alexandrium including one known non-PSP-producer (Alexandrium tamarense, AT-6). HPLC analysis confirmed the PSP-content of the various strains: Alexandrium lusitanicum, Alexandrium minutum and Alexandrium tamarense (ATHK, AT5-1, AT5-3, ATCI02, ATCI03) used in the experiment were PSP-producers. No PSP toxins were detected in the strains Alexandrium sp1, Alexandrium sp2.Exposing rotifer populations to the densities of 2000 cells ml−1 of each of these 10 Alexandrium strains revealed that the (non-PSP) A. tamarense (AT-6) and two other PSP-producing algae: A. lusitanicum, A. minutum, did not appear to adversely impact rotifer populations. Rotifers exposed to these three strains were able to maintain their population numbers, and in some cases, increase them. Although some increases in rotifer population growth following exposures to these three algal species were noted, the rate was less than for the non-exposed control rotifer groups.In contrast, the remaining seven algal strains (A. tamarense ATHK, AT5-1, AT5-3, ATCI02, ATCI03; also Alexandrium sp1 and Alexandrium sp2) all have adverse effects on the rotifers. Dosing rotifers with respective algal cell densities of 2000 cells ml−1 each, for Alexandrium sp1, Alexandrium sp2, and A. tamarense strains ATHK and ATCI03 showed mean lethal time (LT50) on rotifer populations of 21, 28, 29, and 36h, respectively. The remaining three species (A. tamarense strains AT5-1, AT5-3, ATCI02) caused respective mean rotifer LT50s of 56, 56, and 71 h, compared to 160 h for the unexposed “starved control” rotifers. Experiments to determine ingestion rates for the rotifers, based on changes in their Chlorophyll a content, showed that the rotifers could feed on A. lusitanicum, A. minutum and A. tamarense strain AT-6, but could graze to little or no extent upon algal cells of the other seven strains. The effects on rotifers exposed to different cell densities, fractions, and growth phases of A. tamarense algal culture were respectively compared. It was found that only the whole algal cells had lethal effects, with strongest impact being shown by the early exponential growth phase of A. tamarense. The results indicate that some toxic mechanism(s), other than PSP and present in whole algal cells, might be responsible for the adverse effects on the exposed rotifers.  相似文献   

19.
The invasive multicoloured Asian lady beetle, Harmonia axyridis (Pallas), and the indigenous twelve spotted lady beetle, Coleomegilla maculata DeGeer (Col., Coccinellidae), are two important generalist predators commonly found in apple orchards in Quebec, Canada. Both species are exposed to two reduced‐risk insecticides, recently adopted to control codling moth, Cydia pomonella (L.) (Lep., Tortricidae) in south‐eastern Canada. Chlorantraniliprole (Altacor® 35 WG), an anthranilic diamide insecticide, causes paralyses of the muscle cells by interfering with the insect ryanodine receptors, whereas novaluron (Rimon® EC 10), a benzoylphenyl urea, inhibits the chitin synthesis. The aim of this study was to compare the sensitivity of both the invasive ladybeetle H. axyridis and the indigenous C. maculata to reduced‐risk insecticides through the assessment of lethal effect on eggs and larvae following topical contact, ingestion of treated prey and exposure to fresh residues, at field rates (50.75 g a.i./ha chlorantraniliprole and 100 g a.i./ha novaluron) in laboratory conditions. Eggs of both species were not affected. Following 6 days of residual contact, chlorantraniliprole and novaluron caused more than 98% mortality to larvae of both ladybeetle species. In topical contact and ingestion trials, chlorantraniliprole caused less than 18% mortality to larvae of the two species after 6 days following exposure. Novaluron had a drastically different impact on the two predators. It did not affect the indigenous C. maculata, whereas it killed 91% and 96% of H. axyridis individuals after 6 days, respectively, following topical contact and ingestion. These results illustrate a differential sensitivity to novaluron between two relatively close species (subfamily Coccinellinae), a potential impact on the invasion process by H. axyridis, and consequently on the ladybeetle assemblage in the field.  相似文献   

20.
The effects of exposure to the type species for Karlodinium veneficum (PLY # 103) on immune function and histopathology in the blue mussel Mytilus edulis were investigated. Mussels from Whitsand Bay, Cornwall (UK) were exposed to K. veneficum (PLY # 103) for 3 and 6 days. Assays for immune function included total and differential cells counts, phagocytosis and release of extra cellular reactive oxygen species. Histology was carried out on digestive gland and mantle tissues. The toxin cell quota for K. veneficum (PLY # 103) was measured by liquid chromatography–mass spectrometry detecting two separable toxins KvTx1 (11.6 ± 5.4 ng/ml) and KvTx2 (47.7 ± 4.2 ng/ml). There were significant effects of K. veneficum exposure with increasing phagocytosis and release of reactive oxygen species following 6 days exposure. There were no significant effects on total cell counts. However, differential cell counts did show significant effects after 3 days exposure to the toxic alga. All mussels produced faeces but not pseudofaeces indicating that algae were not rejected prior to ingestion. Digestive glands showed ingestion of the algae and hemocyte infiltration after 3 days of exposure, whereas mantle tissue did not show differences between treatments. As the effects of K. veneficum were not observed in the mantle tissue it can be hypothesized that the algal concentration was not high enough, or exposure long enough, to affect all the tissues. Despite being in culture for more than 50 years the original K. veneficum isolate obtained by Mary Parke still showed toxic effects on mussels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号