首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different kinds of articulators, such as the upper and lower lips, jaw, and tongue, are precisely coordinated in speech production. Based on a perturbation study of the production of a fricative consonant using the upper and lower lips, it has been suggested that increasing the stiffness in the muscle linkage between the upper lip and jaw is beneficial for maintaining the constriction area between the lips (Gomi et al. 2002). This hypothesis is crucial for examining the mechanism of speech motor control, that is, whether mechanical impedance is controlled for the speech motor coordination. To test this hypothesis, in the current study we performed a dynamical simulation of lip compensatory movements based on a muscle linkage model and then evaluated the performance of compensatory movements. The temporal pattern of stiffness of muscle linkage was obtained from the electromyogram (EMG) of the orbicularis oris superior (OOS) muscle by using the temporal transformation (second-order dynamics with time delay) from EMG to stiffness, whose parameters were experimentally determined. The dynamical simulation using stiffness estimated from empirical EMG successfully reproduced the temporal profile of the upper lip compensatory articulations. Moreover, the estimated stiffness variation significantly contributed to reproduce a functional modulation of the compensatory response. This result supports the idea that the mechanical impedance highly contributes to organizing coordination among the lips and jaw. The motor command would be programmed not only to generate movement in each articulator but also to regulate mechanical impedance among articulators for robust coordination of speech motor control.  相似文献   

2.
We examined how hand-trajectory smoothness changed during the practice of a motor task where smoothness was quantified by jerk-cost. Four human subjects each moved his nondominant arm between an upper target and a lower target, while circumnavigating a barrier that extended outward from the vertical plane of the targets. The two targets and the barrier placed boundary constraints on hand trajectories, but the motion was not restrained in any other way. Arm movements were recorded on high-speed ciné film, and linear and angular kinematical data were obtained for all arm segments. In each of 100 practice trials, subjects attempted to minimize movement time. After the practice trials, subjects repeated the same motor task but at movement times corresponding to the slowest, mid-range and fastest motion that had occurred during practice. Thus, jerk-cost could be compared for movements of different speeds during practice and after practice. Because the movement task contained several changes in hand-path direction, the changes in the vector characteristics of the hand accelerations were expected to be important for explaining the modulations in jerk-cost with practice. Total jerk-cost, therefore, was calculated as well as the separate magnitudinal and directional jerk-cost components. During practice, total movement time decreased, hand paths became more parabolic in shape, and significant changes occurred in hand acceleration magnitude, direction, and timing. Total jerk-cost and the magnitudinal and directional jerk-cost components were significantly less when slowest hand movements were compared after practice versus during practice. The decrease in jerk-cost indicated an increased smoothness of the practiced movements.K. Schneider was supported by the German Research Association (Deutsche Forschungsgemeinschaft)  相似文献   

3.
PurposeThis study tested the hypothesis that muscle and interaction torques can be altered independently in order to improve in specific kinematics performance observed following practice. We also tested the hypothesis that a simple set of rules of EMG-control and kinetic-control models could explain the EMG and kinetic changes due to practice of movements with reversal.ScopeKinematics of the upper arm with reversal, performed over three distances, was reconstructed using motion analysis. The muscle and interaction torques were calculated using inverse-dynamics. EMG activities of the major arm muscles were also recorded. The results demonstrate that improved performance is facilitated by an increase in muscle torque (and therefore acceleration) at the proximal joint (shoulder) and by an increase in the interaction torque at the distal joint (elbow). No changes were observed in the amount of muscle activity underlying these kinetic modifications, except for a decrease in the shoulder antagonist latency.ConclusionThe results confirm Bernstein’s idea that the central nervous system takes advantage of the passive-interactive properties of the moving system. Also the modulation of the EMG patterns should be explained taking in account the reactive forces and the dual functions (maintenance of posture and generation of movement) of the muscles.  相似文献   

4.
Firstly, upper trapezius EMG activity patterns were recorded on the dominant side of 6 industrial production workers and on the side operating a computer mouse of 14 computer-aided design (CAD) operators to study differences in acute muscular response related to the repetitiveness of the exposure. The work tasks were performed with median arm movement frequencies ranging from 5 min(-1) to 13 min(-1) and were characterized by work cycle times ranging from less than 30 sec to several days. However, the static and median EMG levels and EMG gap frequencies were similar for all work tasks indicating that shoulder muscle loads may be unaffected by large variations in arm movement frequencies and work cycle times. An exposure variation analyses (EVA) showed that the EMG activity patterns recorded during production work were more repetitive than during CAD work, whereas CAD work was associated with more static muscle activity patterns, both may be associated with a risk of developing musculoskeletal symptoms. Secondly, upper trapezius EMG activity patterns recorded on the mouse side of the CAD operators were compared with those recorded on the non-mouse side to study differences in muscular responses potentially related to the risk of developing shoulder symptoms which were more prevalent on the mouse side. The number of EMG gaps on the mouse side were significantly lower than the values for the upper trapezius on the non-mouse side indicating that more continuous activity was present in the upper trapezius muscle on the mouse side and EVA analyses showed a more repetitive muscle activity pattern on the mouse side. These findings may be of importance to explain differences in the prevalence of shoulder symptoms.  相似文献   

5.
Coordinated arm and leg movements imply neural interactions between the rhythmic generators of the upper and lower extremities. In ten healthy subjects in the lying position, activity of the muscles of the upper and lower extremities was recorded during separate and joint cyclic movements of the arms and legs with different phase relationships between the movements of the limbs and under various conditions of the motor task. Antiphase active arm movements were characterized by higher muscle activity than during the inphase mode. The muscle activity during passive arm movements imposed by the experimentalist was significantly lower than muscle activity during passive arm movements imposed by the other arm. When loading one arm, the muscle activity in the other, passively moving, arm increased independently from the synergy of arm movements. During a motor task implementing joint antiphase movements of both upper and lower extremities, compared to a motor task implementing their joint in-phase movements, we observed a significant increase in activity in the biceps brahii muscle, the tibialis anterior muscle, and the biceps femoris muscle. Loading of arms in these motor tasks has been accompanied by increased activity in some leg muscles. An increase in the frequency of rhythmic movements resulted in a significant growth of the muscle activity of the arms and legs during their cooperative movements with a greater rate of rise in the flexor muscle activity of the arms and legs during joint antiphase movements. Thus, both the spatial organization of movements and the type of afferent influences are significant factors of interlimb interactions, which, in turn, determine the type of neural interconnections that are involved in movement regulation.  相似文献   

6.
In tests on four volunteers, we examined coordination of central motor commands (CMCs) controlling slow two-joint movements of the arm within the horizontal plane. Current amplitudes of EMGs recorded from six muscles of the shoulder belt and shoulder and subjected to full-wave rectifying and low-frequency filtration were considered correlates of these commands. In particular, we studied the dependence of coordination of CMCs on the direction of an external force applied to the distal forearm part. As was found, coordination of CMCs significantly depends on the direction of the force flexing the elbow joint. According to our observations, EMGs of definite muscles in the case of performance of a two-joint movement can, in a first approximation, be presented as linear combinations of the EMGs recorded in the course of separate sequential single-joint movements under conditions of shifting the reference point of the hand toward the same point of the operational space as that in the two-joint movement. These data can be interpreted as confirmation of the principle of superposition of elementary CMCs in the performance of complex movements of the extremity.  相似文献   

7.

Background

Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies.

Methods

Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity.

Results

Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001).

Conclusions

Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.  相似文献   

8.
The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of the temporal features of vertical arm movements could provide additional information about gravity force integration into the motor planning. Eight subjects performed single joint vertical arm movements (45° rotation around the shoulder joint) in two opposite directions (upwards and downwards) and at three different speeds (slow, natural and fast). We calculated different parameters of hand acceleration profiles: movement duration (MD), duration to peak acceleration (D PA), duration from peak acceleration to peak velocity (D PA-PV), duration from peak velocity to peak deceleration (D PV-PD), duration from peak deceleration to the movement end (D PD-End), acceleration duration (AD), deceleration duration (DD), peak acceleration (PA), peak velocity (PV), and peak deceleration (PD). While movement durations and amplitudes were similar for upward and downward movements, the temporal structure of acceleration profiles differed between the two directions. More specifically, subjects performed upward movements faster than downward movements; these direction-dependent asymmetries appeared early in the movement (i.e., before PA) and lasted until the moment of PD. Additionally, PA and PV were greater for upward than downward movements. Movement speed also changed the temporal structure of acceleration profiles. The effect of speed and direction on the form of acceleration profiles is consistent with the premise that the CNS optimises motor commands with respect to both gravitational and inertial constraints.  相似文献   

9.
It has been suggested that the coordination of the activity of multiple muscles results from the comparison of the actual configuration of the body with a referent configuration specified by the nervous system so that the recruitment and gradation of the activity of each skeletal muscle depend on the difference between these two configurations. Active movements may be produced by the modification of the referent configuration. The hypothesis predicts the existence of a global minimum in electromyographic (EMG) activity of multiple muscles during movements involving reversals in direction. This prediction was tested in five subjects by analysing movements resembling the act of reaching for an object placed beyond one's reach from a sitting position. In such movements, initially sitting subjects raise their body to a semi-standing position and then return to sitting. Consistent with the hypothesis is the observation of a global minimum in the surface EMG activity of 16 muscles of the arm, trunk and leg at a specific phase of the movement. When the minimum occurred, EMG activity of each muscle did not exceed 2–7% of its maximal activity during the movement. As predicted, global EMG minima occurred at the phase corresponding to the reversal in movement direction, that is, during the transition from raising to lowering of the body. The global EMG minimum may represent the point at which temporal matching occurs between the actual and the referent body configurations. This study implies a specific link between motor behavior and the geometric shape of the body modified by the brain according to the desired action.  相似文献   

10.
A three-dimensional (3-D) arm movement model is presented to simulate kinematic properties and muscle forces in reaching arm movements. Healthy subjects performed reaching movements repetitively either with or without a load in the hand. Joint coordinates were measured. Muscle moment arms, 3-D angular acceleration, and moment of inertias of arm segments were calculated to determine 3-D joint torques. Variances of hand position, arm configuration, and muscle activities were calculated. Ratios of movement variances observed in the two conditions (load versus without load) showed no differences for hand position and arm configuration variances. Virtual muscle force variances for all muscles except deltoid posterior and EMG variances for four muscles increased significantly by moving with the load. The greatly increased variances in muscle activity did not imply equally high increments in kinematic variances. We conclude that enhanced muscle cooperation through synergies helps to stabilize movement at the kinematic level when a load is added.  相似文献   

11.
The movements studied involved moving the tip of a pointer attached to the hand from a given starting point to a given end point in a horizontal plane. Three joints--the shoulder, elbow and wrist--were free to move. Thus the system represented a redundant manipulator. The coordination of the movements of the three joints was recorded and analyzed. The study concerned how the joints are controlled during a movement. The results are used to evaluate several current hypotheses for motor control. Basically, the incremental changes are calculated so as to move the tip of the manipulator along a straight line in the workspace. The values of the individual joints seem to be determined as follows. Starting from the initial values the incremental changes in the three joint angles represent a compromise between two criteria: 1) the amount of the angular change should be about the same in the three joints, and 2) the angular changes should minimize the total cost of the arm position as determined by cost functions defined for each joint as a function of angle. By itself, this mechanism would produce strongly curved trajectories in joint space which could include additional acceleration and deceleration in a joint. These are reduced by the influence of a third criterion which fits with the mass-spring hypothesis. Thus the path is calculated as a compromise between a straight line in workspace and a straight line in joint space. The latter can produce curved paths in the workspace such as were actually found in the experiments. A model calculation shows that these hypotheses can qualitatively describe the experimental findings.  相似文献   

12.
We studied coordination of central motor commands (СMCs) coming to muscles of the shoulder and shoulder belt in the course of single-joint and two-joint movements including flexion and extension of the elbow and shoulder joints. Characteristics of rectified and averaged EMGs recorded from a few muscles of the upper limb were considered correlates of the CMC parameters. Special attention was paid to coordination of CMCs coming to two-joint muscles that are able to function as common flexors (m. biceps brachii, caput breve, BBcb) and common extensors (m. triceps brachii, caput longum, TBcl) of the elbow and shoulder joints. Upper limb movements used in the tests included planar shifts of the arm from one spatial point to another resulting from either simultaneous changes in the angles of the shoulder and elbow joints or isolated sequential (two-stage) changes in these joint angles. As was found, shoulder muscles providing movements of the elbow with changes in the angle of the elbow joint, i.e., BBcb and TBcl, were also intensely involved in the performance of single-joint movements in the shoulder joint. The CMCs coming to two-joint muscles in the course of two-joint movements appeared, in the first approximation, as sums of the commands received by these muscles in the course of corresponding single-joint movements in the elbow and shoulder joints. Therefore, if we interpret the isolated forearm movement performed due to a change in the angle of the elbow joint as the main motor event, while the shoulder movement is considered the accessory one, we can conclude that realization of a two-joint movement of the upper-limb distal part is based on superposition of CMCs related to basic movements (main and accessory). Neirofiziologiya/Neurophysiology, Vol. 41, No. 1, pp. 48–56, January–February, 2009.  相似文献   

13.
The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns.  相似文献   

14.
It has been found that one session of intense muscle strength training decreases muscle strength temporarily and causes neuromuscular fatigue in the trained muscles, but little attention has been given to the effects of neuromuscular fatigue on the other components of motor performance. The purpose of this study was to examine in normal healthy volunteers the effects of a 1-h strength training session on the motor performance of the upper extremity, including reaction time, speed of movement, tapping speed and coordination. Group of 30 healthy female volunteers, aged 29-47 years, were randomly divided into sub-groups, (A and B, n = 15 per group). Both groups first completed a set of motor performance tests on 3 consecutive days. On the 4th day, group A carried out a 1-h muscle strength training session of the upper extremities. Isometric muscle strengths and electromyogram (EMG) data were recorded before the training session. Immediately after the training session the same recordings were repeated, and additional motor performance tests were also performed. Group B carried out only the motor performance tests. The groups exchanged programmes the following week. The 1-h strength training session decreased the isometric muscle strength of wrist flexion by 18% (P < 0.001) and extension by 18% (P < 0.001) in group A, while in group B flexion strength decreased by 19% (P < 0.001) and extension strength by 17% (P < 0.001). All the measured EMG activations also decreased in both groups. There were no statistically significant differences in the results of the motor performance tests between the mean values of the three baseline measurements and the values recorded after the training session. The result was surprising, but straightforward; neuromuscular fatigue induced by a 1-h strength training session of the upper extremities had no effect on the motor performance functions of the hand, as indicated by reaction times, speed of movement, tapping speed and coordination, in these normal healthy female volunteers.  相似文献   

15.
Human interaction partners tend to synchronize their movements during repetitive actions such as walking. Research of inter-human coordination in purely rhythmic action tasks reveals that the observed patterns of interaction are dominated by synchronization effects. Initiated by our finding that human dyads synchronize their arm movements even in a goal-directed action task, we present a step-wise approach to a model of inter-human movement coordination. In an experiment, the hand trajectories of ten human dyads are recorded. Governed by a dynamical process of phase synchronization, the participants establish in-phase as well as anti-phase relations. The emerging relations are successfully reproduced by the attractor dynamics of coupled phase oscillators inspired by the Kuramoto model. Three different methods on transforming the motion trajectories into instantaneous phases are investigated and their influence on the model fit to the experimental data is evaluated. System identification technique allows us to estimate the model parameters, which are the coupling strength and the frequency detuning among the dyad. The stability properties of the identified model match the relations observed in the experimental data. In short, our model predicts the dynamics of inter-human movement coordination. It can directly be implemented to enrich human-robot interaction.  相似文献   

16.
The control of hand equilibrium trajectories in multi-joint arm movements   总被引:10,自引:0,他引:10  
  相似文献   

17.
The aim of the present study was to analyse the effects of microgravity on i) the achievement of goal-directed arm movements and ii) the quadrupedal non-human primate locomotion. A reaching movement in weightlessness would require less muscle contraction since there is no need to oppose gravity. Consequently the electromyographic (EMG) activity of the monkey forelimb muscles should be changed during or after spaceflight. EMG activity of the biceps and triceps muscles during goal-directed arm movements were studied in Rhesus monkeys before, during and after 14 days of spaceflight and flight simulation at normal gravity. The EMG activity was also recorded during treadmill locomotion before and after spaceflight. When performing arm motor tasks, the delay values of the EMG bursts were unchanged during the flight. On the contrary, mean EMG was significantly decreased during the flight comparatively to the pre- and post-flight values, which were very similar. Compared with flight animals, the control ground monkey showed no change in the burst durations and mean EMG. After spaceflight, quadrupedal locomotion was modified. The animals had some difficulty in moving, and abnormal steps were numerous. The integrated area of triceps bursts was increased for the stance phase during locomotion. Taken together these data showed that spaceflight induces a dual adaptative process: first, the discharge of the motor pools of the forelimb musculature was modified during exposure to microgravity, and then upon return to Earth, monkeys changed their new motor strategy and re-adapt to normal gravity.  相似文献   

18.
We studied in humans interrelations between the kinematic characteristics of targeted movements of the arm and current levels of EMG of the muscles providing these movements; the movements were relatively slow, and the attained joint angle was held for a time. The EMG level was considered a correlate of the level of integral motor commands (efferent activity of the respective motoneuronal pools). Application of low-amplitude non-inertial loadings, directed against the forces developed by one or another muscle group, allowed us to provide realization of targeted movements exclusively by the activity of this muscle group, without Involvement of the antagonists. It was demonstrated that the target equilibrium joint angle is reached synchronously with the dynamic phase of EMG activity, before the latter reaches a stationary level. The structure of the dynamic EMG phase itself is complex; in most cases it is split into several components. The dependence between the joint angle and amplitude of the EMG stationary phase is rather complex and variable, and usually it is difficult to predict the characteristics of this phase based on simple biomechanical considerations. There are proofs that at the performance of the studied movements and maintaining a target position there are some components in the mechanical muscle activity, which are not controlled by the motor commands. Thus, the stationary level of a motor command represents only one of several factors responsible for attaining and maintaining a target equilibrium position. Establishing this position is provided, first of all, by interaction of dynamic components of the motor commands to different muscles. Our results show that the attempts to interpret the processes of control of targeted movements on the basis of modifications of the equilibrium point hypothesis are inadequate; these data are in better compliance with the concept of impulse-temporal control; at their interpretation it is also necessary to take more thoroughly into account nonlinear properties of the muscle reactions.  相似文献   

19.
In natural motor behaviour arm movements, such as pointing or reaching, often need to be coordinated with locomotion. The underlying coordination patterns are largely unexplored, and require the integration of both rhythmic and discrete movement primitives. For the systematic and controlled study of such coordination patterns we have developed a paradigm that combines locomotion on a treadmill with time-controlled pointing to targets in the three-dimensional space, exploiting a virtual reality setup. Participants had to walk at a constant velocity on a treadmill. Synchronized with specific foot events, visual target stimuli were presented that appeared at different spatial locations in front of them. Participants were asked to reach these stimuli within a short time interval after a “go” signal. We analysed the variability patterns of the most relevant joint angles, as well as the time coupling between the time of pointing and different critical timing events in the foot movements. In addition, we applied a new technique for the extraction of movement primitives from kinematic data based on anechoic demixing. We found a modification of the walking pattern as consequence of the arm movement, as well as a modulation of the duration of the reaching movement in dependence of specific foot events. The extraction of kinematic movement primitives from the joint angle trajectories exploiting the new algorithm revealed the existence of two distinct main components accounting, respectively, for the rhythmic and discrete components of the coordinated movement pattern. Summarizing, our study shows a reciprocal pattern of influences between the coordination patterns of reaching and walking. This pattern might be explained by the dynamic interactions between central pattern generators that initiate rhythmic and discrete movements of the lower and upper limbs, and biomechanical factors such as the dynamic gait stability.  相似文献   

20.
Motor overflow (MO) is an involuntary muscle activation associated with strenuous contralateral movement and may become manifested after stroke. The study was undertaken to investigate physiological correlation underlying atypical directional effect of joint movement on post-stroke MO in the affected upper limb. Thirty patients with unilateral post-stroke hemiparesis and fifteen age-matched healthy controls participated in this study. According to motor function assessed with the Fugl-Meyer arm scale, the patients were categorized into two groups of equal number with better (CVA_G; n = 15) or poorer motor functions (CVA_P; n = 15). Surface electromyography (EMG) was used to record irradiated muscle activation from eight muscles of the affected upper limb when the subjects performed maximal isometric contractions in different directions with the unaffected shoulder, elbow and wrist joints. The results showed that only MO amplitude of the CVA_G and the control groups was more sensitive to variations in direction of joint movement in the unaffected arm than the CVA_P group. The CVA_G group exhibited larger amplitudes of MO than the control analog, whereas this tendency was reversed for the CVA_P group. In terms of EMG polar plots, spatial representations of post-stroke MO were insensitive to direction of contralateral movement. The spatial representations of the CVA_G and CVA_P groups were predominated by potent flexion-abduction synergy, contrary to the typical extension adduction synergy seen in the control analog. In conclusion, post-stroke MO amplitude was subject to contralateral movement direction for healthy controls and stroke patients with better motor recovery. However, alterations in MO spatial pattern due to directional effect were not strictly related to the degree of motor deficits of the stroke victims.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号