首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas aeruginosa PAK pili and Candida albicans fimbriae are adhesins present on the microbial cell surfaces which mediate binding to epithelial cell-surface receptors. The receptor-binding domain (adhesintope) of the PAK pilus adhesin has been shown previously to reside in the carboxy-terminal disulphide-bonded region of P. aeruginosa pilin (PAK128-144). The delineation of the C. albicans fimbrial adhesintope was investigated in these studies using synthetic peptides which correspond to the whole (PAK128-144) or part of (PAK134-140) adhesintope of the PAK pilus and their respective anti-peptide antisera and biotinylated PAK pili (Bt-PAK pili), fimbriae (Bt-fimbriae), P. aeruginosa whole cells (Bt- P. aeruginosa ) and C. albicans whole cells (Bt- C. albicans ). The results from these studies confirmed that a structurally conserved motif akin to the PAK(128-144) peptide sequence is present in C. albicans fimbrial adhesin and that the seven-amino-acid residue PAK(134-140) sequence plays an important role in forming the adhesintope for both P. aeruginosa PAK pilus and C. albicans fimbrial adhesins.  相似文献   

2.
Adherence of Pseudomonas aeruginosa to a patient's epithelial surface is thought to be an important first step in the infection process. Pseudomonas aeruginosa is capable of attaching to epithelial cells via its pili, yet little is known about the epithelial receptors of this adhesin. Using nitrocellulose replicas of polyacrylamide gels of solubilized human buccal epithelial cells (BECs), glycoproteins (Mz: 82,000, and four bands between 40,000 and 50,000) that bound purified pili from P. aeruginosa strain K (PAK) were identified by immunoblotting with a pilus-specific monoclonal antibody that does not affect pilus binding to BECs (PK3B). All pilus-binding glycoproteins were surface localized, as determined by surface radioiodination of intact BECs. Binding of pili to all of the glycoproteins was inhibited by Fab fragments of monoclonal antibody PK99H, which inhibits PAK pili binding to BECs by binding to or near the binding domain of the pilus, but not by Fab fragments of monoclonal antibody PK41C, which binds to PAK pilin but does not inhibit pili binding to BECs, demonstrating that pilus binding to these glycoproteins is likely via the same region of the pilus that binds to intact BECs. Periodate oxidation of the blot eliminated pili binding to all glycoproteins, indicating that a carbohydrate moiety is an important determinant for pilus-binding activity. However, not all of the glycoproteins exhibited the same degree of sensitivity to periodate oxidation. Furthermore, monosaccharide inhibition of pilus binding to BECs implicated L-fucose and N-acetylneuraminic acid as receptor moieties.  相似文献   

3.
Haemophilus influenzae type b (Hib) organisms produce pili, which mediate attachment to human cells and are multimeric structures composed of a 24-kDa subunit called pilin or HifA. Although pili from other organisms contain additional proteins accessory to pilin, no structural components other than pilin have been identified in Hib pili. Previous analysis of a Hib pilus gene cluster, however, suggested that two genes, hifD and hifE, may encode additional pilus subunits. To determine if hifD and hifE encode pilus components, the genes were overexpressed in Escherichia coli and the resulting proteins were purified and used to raise polyclonal antisera. Antisera raised against C-terminal HifD and HifE fragments reacted with H. influenzae HifD and HifE proteins, respectively, on Western immunoblots. Western immunoblot analysis of immunoprecipitated Hib pili demonstrated that HifD and HifE copurified with pili. In enzyme-linked immunosorbent assays, antisera raised against a recombinant HifE protein that contained most of the mature protein reacted more to piliated Hib than to nonpiliated Hib or to a mutant containing a hifE gene insertion. Immunoelectron microscopy confirmed that the HifE antiserum bound to pili and demonstrated that the antiserum bound predominantly to the pilus tips. These data indicate that HifD and HifE are pilus subunits. Adherence inhibition studies demonstrated that the HifE antiserum completely blocked pilus-mediated hemagglutination, suggesting that HifE mediates pilus adherence.  相似文献   

4.
Type IV pili (TFP) play central roles in the expression of many phenotypes including motility, multicellular behavior, sensitivity to bacteriophages, natural genetic transformation, and adherence. In Neisseria gonorrhoeae, these properties require ancillary proteins that act in conjunction with TFP expression and influence organelle dynamics. Here, the intrinsic contributions of the pilin protein itself to TFP dynamics and associated phenotypes were examined by expressing the Pseudomonas aeruginosa PilA(PAK) pilin subunit in N. gonorrhoeae. We show here that, although PilA(PAK) pilin can be readily assembled into TFP in this background, steady-state levels of purifiable fibers are dramatically reduced relative those of endogenous pili. This defect is due to aberrant TFP dynamics as it is suppressed in the absence of the PilT pilus retraction ATPase. Functionally, PilA(PAK) pilin complements gonococcal adherence for human epithelial cells but only in a pilT background, and this property remains dependent on the coexpression of both the PilC adhesin and the PilV pilin-like protein. Since P. aeruginosa pilin only moderately supports neisserial sequence-specific transformation despite its assembly proficiency, these results together suggest that PilA(PAK) pilin functions suboptimally in this environment. This appears to be due to diminished compatibility with resident proteins essential for TFP function and dynamics. Despite this, PilA(PAK) pili support retractile force generation in this background equivalent to that reported for endogenous pili. Furthermore, PilA(PAK) pili are both necessary and sufficient for bacteriophage PO4 binding, although the strain remains phage resistant. Together, these findings have significant implications for TFP biology in both N. gonorrhoeae and P. aeruginosa.  相似文献   

5.
The opportunistic pathogen Pseudomonas aeruginosa produces multifunctional, polar, filamentous appendages termed type IV pili. Type IV pili are involved in colonization during infection, twitching motility, biofilm formation, bacteriophage infection, and natural transformation. Electrostatic surface analysis of modeled pilus fibers generated from P. aeruginosa strain PAK, K122-4, and KB-7 pilin monomers suggested that a solvent-exposed band of positive charge may be a common feature of all type IV pili. Several functions of type IV pili, including natural transformation and biofilm formation, involve DNA. We investigated the ability of P. aeruginosa type IV pili to bind DNA. Purified PAK, K122-4, and KB-7 pili were observed to bind both bacterial plasmid and salmon sperm DNA in a concentration-dependent and saturable manner. PAK pili had the highest affinity for DNA, followed by K122-4 and KB-7 pili. DNA binding involved backbone interactions and preferential binding to pyrimidine residues even though there was no evidence of sequence-specific binding. Pilus-mediated DNA binding was a function of the intact pilus and thus required elements present in the quaternary structure. However, binding also involved the pilus tip as tip-specific, but not base-specific, antibodies inhibited DNA binding. The conservation of a Thr residue in all type IV pilin monomers examined to date, along with the electrostatic data, implies that DNA binding is a conserved function of type IV pili. Pilus-mediated DNA binding could be important for biofilm formation both in vivo during an infection and ex vivo on abiotic surfaces.  相似文献   

6.
Major antigenic determinants of F and ColB2 pili.   总被引:9,自引:7,他引:2       下载免费PDF全文
F-like conjugative pili are expressed by plasmids with closely related transfer systems. They are tubular filaments that are composed of repeating pilin subunits arranged in a helical array. Both F and ColB2 pilin have nearly identical protein sequences, and both contain an acetylated amino-terminal alanine residue. However, they differ by a few amino acid residues at their amino termini. Rabbit antisera raised against purified F and ColB2 pili are immunologically cross-reactive by only 25%, as measured by a competition enzyme-linked immunosorbent assay (ELISA). A tryptic peptide corresponding to the first 15 amino acid residues of ColB2 pilin was isolated and found to remove nearly 80% of ColB2 pilus-directed rabbit antibodies. The corresponding tryptic peptide from F pilin, which reacted with anti-F pilus antibodies to remove 80%, was less than 20% reactive with anti-ColB2 pilus antiserum. Cleavage of these peptides with cyanogen bromide (at a methionine residue approximately in the middle of the peptide) did not affect the antigenicity of these peptides. Synthetic N alpha-acetylated peptides corresponding to the first eight amino acids of F pilin (Ac-Ala-Gly-Ser-Ser-Gly-Gln-Asp-Leu-COOH) and the first six amino acids of ColB2 pilin (Ac-Ala-Gln-Gly-Gln-Asp-Leu-COOH) were prepared and tested by competition ELISA with homologous and heterologous anti-pilus antisera. The F peptide F(1-8) inhibited the interaction of F pili and anti-F pilus antiserum to 80%, while the ColB2 peptide ColB2(1-6) inhibited anti-ColB2 pilus antiserum reacting with ColB2 pili by greater than 60%. The two peptides F(1-8) and ColB2(1-6) were inactive by competition ELISAs with heterologous antisera. These results suggest that the major antigenic determinant of both F and ColB2 pili is at the amino terminus of the pilin subunit and that 80% of antibodies raised against these pili are specific for this region of the pilin molecule.  相似文献   

7.
Pili are one of the adhesins of Pseudomonas aeruginosa that mediate adherence to epithelial cell-surface receptors. The pili of P. aeruginosa strains PAK and PAO were examined and found to bind gangliotetraosyl ceramide (asialo-GM1) and, to a lesser extend, ll3N-acetylneuraminosylgangliotetraosyl ceramide (GM1) in solid-phase binding assays. Asialo-GM1, but not GM1, inhibited both PAK and PAK pili binding to immobilized asialo-GM1 on the microtitre plate. PAO pili competitively inhibited PAK pili binding to asialo-GM1, suggesting the presence of a structurally similar receptor-binding domain in both pilus types. The interaction between asialo-GM1 and pili occurs at the pilus tip as asialo-GM1 coated colloidal gold only decorates the tip of purified pili. Three sets of evidence suggest that the C-terminal disulphide-bonded region of the Pseudomonas pilin is exposed at the tip of the pilus: (i) immunocytochemical studies indicate that P. aeruginosa pili have a basal-tip structural differentiation where the monoclonal antibody (mAb) PK3B recognizes an antigenic epitope displayed only on the basal ends of pili (produced by shearing) while the mAb PK99H, whose antigenic epitope resides in residues 134–140 (Wong et al., 1992), binds only to the tip of PAK pili; (ii) synthetic peptides, PAK(128–144)ox-OH and PAO(128–144)ox-OH, which correspond to the C-terminal disulphide-bonded region of Pseudomonas pilin are able to bind to asialo-GM1 and inhibit the binding of pili to the glycolipid; (iii) PK99H was shown to block PAK pilus binding to asialo-GM1 Monoclonal antibody PK3B had no effect on PAK pili binding to asialo-GM1 Thus, the adherence of the Pseudomonas pilus to glycosphingolipid receptors is a tip-associated phenomenon Involving a tip-exposed C-terminal region of the pilin structural subunit.  相似文献   

8.
Pseudomonas aeruginosa is a piliated opportunistic pathogen. We have recently reported the cloning of the structural gene for the pilus protein, pilin, from P. aeruginosa PAK (B. L. Pasloske, B. B. Finlay, and W. Paranchych, FEBS Lett. 183:408-412, 1985), and in this paper we present evidence that this chimera (pBP001) expresses P. aeruginosa PAK pilin in Escherichia coli independent of a vector promoter. The strength of the promoter for the PAK pilin gene was assayed, and the cellular location of the pilin protein within E. coli was examined. This protein was present mainly in the inner membrane fraction both with and without its six-amino-acid leader sequence, but it was not assembled into pili.  相似文献   

9.
10.
D Nunn  S Bergman    S Lory 《Journal of bacteriology》1990,172(6):2911-2919
The polar pili of Pseudomonas aeruginosa are composed of monomers of the pilin structural subunits. The biogenesis of pili involves the synthesis of pilin precursor, cleavage of a six-amino-acid leader peptide, membrane translocation, and assembly of monomers into a filamentous structure extending from the bacterial surface. This report describes three novel genes necessary for the formation of pili. DNA sequences adjacent to pilA, the pilin structural gene, were cloned and mutagenized with transposon Tn5. Each of the insertions were introduced into the chromosome of P. aeruginosa PAK by gene replacement. The effect of the Tn5 insertions in the bacterial chromosome on pilus assembly was assessed by electron microscopy and sensitivity of mutants to a pilus-specific bacteriophage. The resultant mutants were also tested for synthesis and membrane localization of the pilin antigen in order to define the genes required for maturation, export, and assembly of pilin. A 4.0-kilobase-pair region of DNA adjacent to the pilin structural gene was found to be essential for formation of pili. This region was sequenced and found to contain three open reading frames coding for 62-, 38- to 45-, and 28- to 32-kilodalton proteins (pilB, pilC, and pilD, respectively). Three proteins of similar molecular weight were expressed in Escherichia coli from the 4.0-kilobase-pair fragment flanking pilA with use of a T7 promoter-polymerase expression system. The results of the analyses of the three genes and the implications for pilin assembly and maturation are discussed.  相似文献   

11.
Biochemical studies on pili isolated from Pseudomonas aeruginosa strain PAO.   总被引:17,自引:0,他引:17  
Pseudomonas aeruginosa strains PAO and PAK bear polar pili which are flexible filaments having a diameter of 6 nm and an average length of 2500 nm. Both types of pili are retractile and promote infection by a number of bacteriophages. The present communication describes the partial biochemical characterization of PAO pili isolated from a multipiliated nonretractile mutant of PAO. The observed properties are compared to those of PAK pili which were characterized previously. PAO pili were found to contain a single polypeptide subunit of 18 700 daltons. This is similar to PAK pili which contain a single polypeptide of 18 100 daltons. The amino acid composition of PAO pilin was also similar to that of PAK pilin. Neither protein contained phosphate or carbohydrate residues and both were found to contain N-methylphenylalanine at the amino terminus. Sequencing of 20 amino acid residues at the amino terminal end of PAO pilin revealed the sequence to be identical with that of PAK pilin, while tryptic peptide analyses of PAO and PAK pilin indicated that the two proteins probably contain a number of homologous regions within the polypeptide. It was concluded that PAO and PAK pili were closely related structures.  相似文献   

12.
Recently, we reported the degree of N-terminal processing within the cytoplasmic membranes of three mutant pilins from Pseudomonas aeruginosa PAK with respect to leader peptide removal and the methylation of the N-terminal phenylalanine (B. L. Pasloske and W. Paranchych, Mol. Microbiol. 2:489-495, 1988). The results of those experiments showed that the deletion of 4 or 8 amino acids within the highly conserved N terminus greatly inhibited leader peptide removal. On the other hand, the mutation of the glutamate at position 5 to a lysine permitted leader peptide cleavage but inhibited transmethylase activity. In this report, we have examined the effects of these mutant pilins upon pilus assembly in a P. aeruginosa PAO host with or without the chromosomally encoded pilin gene present. Pilins with deletions of 4 or 8 amino acids in the N-terminal region were not incorporated into pili. Interestingly, pilin subunits containing the glutamate-to-lysine mutation were incorporated into compound pili together with PAO wild-type subunits. However, the mutant pilins were unable to polymerize as a homopolymer. When wild-type PAK and PAO pilin subunits were expressed in the same bacterial strain, the pilin subunits assembled into homopolymeric pili containing one or the other type of subunit.  相似文献   

13.
Flagella and pili are appendages that modulate attachment of Pseudomonas aeruginosa to solid surfaces. However, previous studies have mostly reported absolute attachment. Neither the dynamic roles of these appendages in surface association nor those of attachment phenotypes have been quantified. We used video microscopy to address this issue. Unworn, sterile, soft contact lenses were placed in a laminar-flow optical chamber. Initial lens association kinetics for P. aeruginosa strain PAK were assessed in addition to lens-surface association phenotypes. Comparisons were made to strains with mutations in flagellin (fliC) or pilin (pilA) or those in flagellum (motAB) or pilus (pilU) function. PAK and its mutants associated with the contact lens surface at a constant rate according to first-order kinetics. Nonswimming mutants associated ~30 to 40 times slower than the wild type. PAK and its pilA mutant associated at similar rates, but each ~4 times faster than the pilU mutant. Lens attachment by wild-type PAK induced multiple phenotypes (static, lateral, and rotational surface movement), each showing only minor detachment. Flagellin (fliC) and flagellar-motility (motAB) mutants did not exhibit surface rotation. Conversely, strains with mutations in pilin (pilA) and pilus retraction (pilU) lacked lateral-surface movement but displayed enhanced surface rotation. Slower surface association of swimming-incapable P. aeruginosa mutants was ascribed to lower convective-diffusion-arrival rates, not to an inability to adhere. Flagellum function (swimming) enhanced lens association, attachment, and rotation; hyperpiliation hindered lens association. P. aeruginosa bound through three different adhesion sites: flagellum, pili, and body. Reduction of bacterial attachment to contact lenses thus requires blockage of multiple adhesion phenotypes.  相似文献   

14.
Many strains of Pseudomonas aeruginosa possess pili which have been implicated in the pathogenesis of the organism. This report presents the cloning and expression in Escherichia coli of the gene encoding the structural subunit of the pili of P. aeruginosa PAK. Total DNA from this strain was partially digested with Sau3A and inserted into the cloning vector pUC18. Recombinant E. coli clones were screened with oligonucleotide probes prepared from the constant region of the previously published amino acid sequence of the mature pilin subunit. Several positive clones were identified, and restriction maps were generated. Each clone contained an identical 1.1-kilobase HindIII fragment which hybridized to the oligonucleotide probes. Western blot analysis showed that all of the clones expressed small amounts of the P. aeruginosa pilin subunit, which has a molecular mass of ca. 18,000. This expression occurred independently of the orientation of the inserted DNA fragments in the cloning vector, indicating that synthesis was directed from an internal promoter. However, subclones containing the 1.1-kilobase HindIII fragment in a specific orientation produced an order of magnitude more of the pilin subunit. While the expressed pilin antigen was located in both the cytoplasmic and outer membrane fractions of E. coli, none appeared to be polymerized into a pilus structure.  相似文献   

15.
Pilin assembly into type IV pili is required for virulence by bacterial pathogens that cause diseases such as cholera, pneumonia, gonorrhea, and meningitis. Crystal structures of soluble, N-terminally truncated pilin from Vibrio cholera toxin-coregulated pilus (TCP) and full-length PAK pilin from Pseudomonas aeruginosa reveal a novel TCP fold, yet a shared architecture for the type IV pilins. In each pilin subunit a conserved, extended, N-terminal alpha helix wrapped by beta strands anchors the structurally variable globular head. Inside the assembled pilus, characterized by cryo-electron microscopy and crystallography, the extended hydrophobic alpha helices make multisubunit contacts to provide mechanical strength and flexibility. Outside, distinct interactions of adaptable heads contribute surface variation for specificity of pilus function in antigenicity, motility, adhesion, and colony formation.  相似文献   

16.
The proteins of purified inner and outer membranes obtained from Pseudomonas aeruginosa strains PAK and PAK/2Pfs were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and treated with antiserum raised against pure pili. Bound antipilus antibodies were visualized by reaction with 125I-labeled protein A from Staphylococcus aureus. The results showed that there are pools of pilin in both the inner and outer membranes of P. aeruginosa and that the pool size in the multipiliated strain is comparable with that of the wild-type strain.  相似文献   

17.
The entire amino acid sequence for Pseudomonas aeruginosa PAO pilin was determined through peptide sequencing and from the complete nucleotide sequence encoding the pilin gene. The precursor PAO pilin is 149 amino acids in length which includes a 6-amino-acid positively charged leader sequence. Comparison of the amino acid sequences of pilin produced by P. aeruginosa PAO and PAK reveals a region of high homology corresponding to the leader peptide and residues 1 to 54 of the mature pilin. The amino acid sequence of the peptide encompassing the major antigenic determinant of PAK differs greatly from that of the equivalent region in PAO. The C-terminal regions of these proteins are semiconserved. Few major differences were found when the predicted secondary structures for PAO and PAK pilins were compared. Major nucleotide sequence variation between the equivalent restriction fragments from PAO and PAK occurred within the areas coding for the peptides containing the immunodominant site for PAK pilin and the C termini.  相似文献   

18.
Pseudomonas stutzeri lives in terrestrial and aquatic habitats and is capable of natural genetic transformation. After transposon mutagenesis, transformation-deficient mutants were isolated from a P. stutzeri JM300 strain. In one of them a gene which coded for a protein with 75% amino acid sequence identity to PilC of Pseudomonas aeruginosa, an accessory protein for type IV pilus biogenesis, was inactivated. The presence of type IV pili was demonstrated by susceptibility to the type IV pilus-dependent phage PO4, by occurrence of twitching motility, and by electron microscopy. The pilC mutant had no pili and was defective in twitching motility. Further sequencing revealed that pilC is clustered in an operon with genes homologous to pilB and pilD of P. aeruginosa, which are also involved in pilus formation. Next to these genes but transcribed in the opposite orientation a pilA gene encoding a protein with high amino acid sequence identity to pilin, the structural component of type IV pili, was identified. Insertional inactivation of pilA abolished pilus formation, PO4 plating, twitching motility, and natural transformation. The amounts of (3)H-labeled P. stutzeri DNA that were bound to competent parental cells and taken up were strongly reduced in the pilC and pilA mutants. Remarkably, the cloned pilA genes from nontransformable organisms like Dichelobacter nodosus and the PAK and PAO strains of P. aeruginosa fully restored pilus formation and transformability of the P. stutzeri pilA mutant (along with PO4 plating and twitching motility). It is concluded that the type IV pili of the soil bacterium P. stutzeri function in DNA uptake for transformation and that their role in this process is not confined to the species-specific pilin.  相似文献   

19.
Minor pilin subunits are conserved in Vibrio cholerae type IV pili   总被引:1,自引:0,他引:1  
The nucleotide sequences of five open reading frames within the Vibrio cholerae NAGV14 type IV pilus gene cluster were determined. The genes showed high homology to the mannose-sensitive hemagglutinin (MSHA) pilus genes mshB, mshC, mshD, mshO and mshP. PCR analysis showed that a MSHA-like gene cluster is highly conserved among different V. cholerae strains, with the exception of the previously reported major pilin subunit. Recombinant MshB and MshO proteins were purified and specific antiserum was raised to each of them. Western blotting analyses showed that these antisera reacted with purified NAGV14 and MSHA pili. The results suggested that MshB and MshO are minor components of the pilus fiber. Although there was no cross-reaction between the major pilin subunits of NAGV14 and MSHA pili, minor components seemed to be highly homologous and immunologically cross-reactive.  相似文献   

20.
The pilin structural gene of Pseudomonas aeruginosa 1244 was cloned in both cosmids and lambda. Expression of the cloned gene was detected in P. aeruginosa strains PAO2003, PA103, and 653A by an immunoblot reaction utilizing monoclonal antibodies. Western blot analysis showed that pilin expressed from the cloned gene was slightly larger than native 1244 pilin when produced in strains PAO2003 and 653A, but distinctly smaller in PA103. Bacteriophages specific for the 1244 pilus did not lyse strain PAO2003 containing the cloned 1244 pilin gene, indicating that functional 1244 pili were not assembled in this recombinant strain. Nucleotide sequencing revealed a coding region which when translated would produce a 15,615 dalton peptide. The amino-terminal region of this peptide is identical with published pilin sequences. While the rest of the peptides are generally dissimilar, common residues are seen within potentially antigenic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号