首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
生物有机体基因组DNA经常会受到内源或外源因素的影响而导致结构发生变化,产生损伤;在长期进化过程中,有机体也相应形成了一系列应对与修复损伤DNA,并维持染色体基因组正常结构功能的机制。其中DNA损伤检验点(DNA damage checkpoint)就是在感应DNA损伤的基础上,对损伤感应信号进行转导,或引起细胞周期的暂停,从而使细胞有足够的时间对损伤DNA进行修复,或最终导致细胞发生凋亡。DNA损伤检验点信号转导途径是一个高度保守的信号感应过程,整个途径大致可以分为损伤感应、信号传递及信号效应3个组成部分。其中3-磷脂酰肌醇激酶家族类成员ATM(ataxia-telangiectasia mutated)和ATR(ataxia-telangiectasia and Rad3-related)活性的增加构成整个途径活化的第一步。它们通过激活下游的效应激酶,Chk2/Chk1,通过协同作用许多其他调控细胞周期、DNA复制、DNA损伤修复及细胞凋亡等过程的蛋白质因子来实现细胞对DNA损伤的高度协调反应。近十几年,随着此领域研究的不断深入,人们逐步揭示了DNA损伤检验点途径发生过程中,各种核心组分通过与不同调节因子、效应因子及DNA损伤修复蛋白间的复杂相互作用,以实现监测感应异常DNA结构并实施相应反应的机制;其中,检验点衔接因子(mediators)及染色质结构,尤其是核小体组蛋白的共价修饰在调控ATM/ATR活性,促进ATM/ATR与底物间的相互作用以及介导DNA损伤位点周围染色质区域上多蛋白复合物在时间与空间上的动态形成发挥着重要的作用。同时,人们也开始发现DNA损伤检验点途径与DNA损伤修复、基因组稳定性以及肿瘤发生等过程之间某些内在的联系。该反应途径在通过协调细胞针对DNA损伤做出各种反应的基础上,直接或间接地参与或调控DNA损伤修复过程,并与DNA损伤修复途径协同作用最终保证染色体基凶组结构的完整性,而检验点途径的改变,则会引起基因组不稳定的发生,包括从突变频率的提高到大范围的染色体重排,以及染色体数量的畸变。如:突变发生在肿瘤形成早期,会大大增加肿瘤发生的几率。文章将对DNA损伤检验点途径机制及其对DNA损伤修复、基因组稳定性影响的最新进展进行综述。  相似文献   

2.
DNA损伤检验点调控的分子机制   总被引:1,自引:0,他引:1  
Guo YH  Zhu YB 《生理科学进展》2007,38(3):208-212
多种因素可以引起DNA损伤而最终导致基因产生错义突变、缺失或错误重组。为确保遗传准确性,细胞形成了复杂的细胞周期监督机制,即细胞周期检验点。其中DNA损伤检验点由许多检验点相关蛋白组成,可以识别损伤的DNA,经复杂的信号转导途径引发蛋白激酶的级联反应,减慢或阻滞细胞周期进程,从而为细胞修复损伤的DNA赢得时间。  相似文献   

3.
刘阳  孙静亚  孔道春 《生命科学》2014,(11):1108-1119
DNA复制是细胞最基本的生命活动之一,是生物体生存和繁殖的基础。从原核生物到真核生物,DNA复制过程基本保守,分为复制起始和延伸两个阶段。复制叉是DNA复制的基本结构,它容易遭受多种内源或外源的DNA复制压力影响而停顿,导致基因组不稳定,引起细胞凋亡、癌变或细胞死亡等严重后果。为了维持复制叉的稳定,细胞进化出了一系列机制,其中最重要机制之一便是S期细胞周期检验点。就影响DNA复制叉稳定的内外因素、S期细胞周期检验点与复制叉稳定性的关系以及复制叉稳定性与相关疾病的发生、治疗等问题进行简要综述。  相似文献   

4.
ATM、ATR和DNA损伤介导的细胞周期阻滞   总被引:9,自引:0,他引:9  
朱虹  缪泽鸿  丁健 《生命科学》2007,19(2):139-148
ATM和ATR属于PIKK家族,是DNA损伤检查点的主要成员。它们被不同类型的DNA损伤所激活,通过磷酸化相应的下游蛋白Chk1和Chk2等,调节细胞周期各个检查点,引起细胞周期阻滞,使DNA损伤得以修复。ATM和ATR在维持基因组的稳定性中起到至关重要的作用。本文着重综述有关ATM和ATR在DNA损伤介导的细胞周期阻滞中发挥的作用以及相互关系的最新研究进展。  相似文献   

5.
细胞周期检查点在细胞遭遇DNA损伤因子的攻击或遇到营养缺乏等不利因素作用时,能够暂时阻止或减慢细胞周期的进程,是细胞在长期进化中发展起来的抵御DNA损伤的重要机制.不仅如此,最近的研究表明,在正常生理条件下,存在一种S期检查点,对DNA复制的速度进行调控.从分子水平而言,这种调控作用可能是通过一系列细胞周期调控蛋白如ATR、9-1-1复合体、Chk1、Cdc25A和CDK2等的作用来实现的.这种调节作用对细胞至关重要,它使DNA复制速度不致于过快,从而减少复制过程中发生错误的几率,维护基因组的稳定性.  相似文献   

6.
细胞周期检验点与肿瘤发生之间关系的研究进展   总被引:1,自引:0,他引:1  
牟华 《生物技术通讯》2009,20(1):111-113,122
DNA损伤反应引起的基因组不稳定性并不足以导致肿瘤发生,还需要一些协同突变促进肿瘤的生长或存活,因此,基因组结构不稳定和周期检验点突变失活是肿瘤发生的重要因素。与正常细胞不同,肿瘤细胞中细胞周期检验点反应缺陷,当肿瘤细胞遭受基因毒药物损伤时,可通过激活周期检验点反应阻滞细胞周期进程,加强损伤修复,导致耐药表型的产生。因此,寻找特异性的检验点抑制剂来加强化疗药物或辐射对肿瘤细胞的杀伤效应,已成为肿瘤治疗的一个研究方向。  相似文献   

7.
细胞DNA损伤检控点   总被引:1,自引:0,他引:1  
细胞周期检控点是维持细胞基因组稳定性的一个重要机制,主要包括。DNA损伤检控点、DNA复制检控点和纺锤体组装检控点。其中DNA损伤检控点能检测细胞在生命活动过程中出现的DNA损伤并引发细胞周期阻滞,为修复损伤提供足够的时间,以保证细胞遗传的稳定性。有关DNA损伤检控点的研究近年来已经取得了突破性进展,现简要介绍近年来在DNA损伤检控点研究中的一些新进展。  相似文献   

8.
在真核生物中,DNA复制在染色体上特定的多位点起始.当细胞处在晚M及G1期,多个复制起始蛋白依次结合到DNA复制源,组装形成复制前复合体.pre.RC在Gl-S的转折期得到激活,随后,多个直接参与DNA复制又形成的蛋白结合到DNA复制源,启动DNA的复制,形成两个双向的DNA复制又.在染色体上,移动的DNA复制又经常会碰到复制障碍(二级DNA结构、一些蛋白的结合位点、损伤的碱基等)而暂停下来,此时,需要细胞周期检验点的调控来稳定复制叉,否则,会导致复制又垮塌及基因组不稳定.本文就真核细胞染色体DNA复制起始的机制,以及复制又稳定性的维持机制进行简要综述.  相似文献   

9.
Rad17是细胞应答DNA损伤和复制叉阻滞信号转导过程中一个关键的检控蛋白,在DNA损伤和DNA复制检控中具有非常重要的作用.现对Radl7在DNA损伤检控、DNA复制检控、端粒结构稳定以及减数分裂细胞周期检控中的重要作用进行综述,并探讨Radl7与肿瘤发生的关系.  相似文献   

10.
细胞周期检定点激酶ATM蛋白属于磷酸肌醇3激酶(PI-3K)家族成员,也是哺乳动物细胞BASC高分子蛋白复合物的组成之一。ATM调整由于DNA损伤引发的DNA修复和凋亡通路,该通路主要表现为DNA损伤激活ATM激酶,ATM激酶磷酸化其下游的相应蛋白,使细胞在细胞周期关卡处停滞分裂,主要是G1-S期和G2-M期的阻滞,使损伤的DNA得以修复,当修复失败时,细胞进入凋亡进程。ATM磷酸化的蛋白质很多,如p53,cdc25A,cdc25C等,这些蛋白质对细胞周期关卡调控都非常重要,因此也就证明了ATM在细胞周期调控中的重要作用。  相似文献   

11.
Chk1 protein kinase plays a critical role in checkpoints that restrict progression through the cell cycle if DNA replication has not been completed or DNA damage has been sustained. ATR-dependent activation of Chk1 is mediated by Claspin. Phosphorylation of Claspin at two sites (Thr916 and Ser945 in humans) in response to DNA replication arrest or DNA damage recruits Chk1 to Claspin. Chk1 is subsequently phosphorylated by ATR and fully activated to control cell cycle progression. We show that ablation of Chk1 by siRNA in human cells or its genetic deletion in chicken DT40 cells does not prevent phosphorylation of Claspin at Thr916 (Ser911 in chicken). Chk1, however, does play other roles, possibly indirect, in the phosphorylation of Claspin and its induction. These results demonstrate that phosphorylation of Claspin within the Chk1-binding domain is catalysed by an ATR-dependent kinase distinct from Chk1.  相似文献   

12.
Cancer stem cell (SC) chemoresistance may be responsible for the poor clinical outcome of non-small-cell lung cancer (NSCLC) patients. In order to identify the molecular events that contribute to NSCLC chemoresistance, we investigated the DNA damage response in SCs derived from NSCLC patients. We found that after exposure to chemotherapeutic drugs NSCLC-SCs undergo cell cycle arrest, thus allowing DNA damage repair and subsequent cell survival. Activation of the DNA damage checkpoint protein kinase (Chk) 1 was the earliest and most significant event detected in NSCLC-SCs treated with chemotherapy, independently of their p53 status. In contrast, a weak Chk1 activation was found in differentiated NSCLC cells, corresponding to an increased sensitivity to chemotherapeutic drugs as compared with their undifferentiated counterparts. The use of Chk1 inhibitors in combination with chemotherapy dramatically reduced NSCLC-SC survival in vitro by inducing premature cell cycle progression and mitotic catastrophe. Consistently, the co-administration of the Chk1 inhibitor AZD7762 and chemotherapy abrogated tumor growth in vivo, whereas chemotherapy alone was scarcely effective. Such increased efficacy in the combined use of Chk1 inhibitors and chemotherapy was associated with a significant reduction of NSCLC-SCs in mouse xenografts. Taken together, these observations support the clinical evaluation of Chk1 inhibitors in combination with chemotherapy for a more effective treatment of NSCLC.  相似文献   

13.
When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression.  相似文献   

14.
In response to ionizing radiation, checkpoint kinase 2 (Chk2) is activated in an ataxia telangiectasia mutation-dependent manner and induces either cell cycle arrest or apoptosis. Chk2 is also autophosphorylated following DNA damage. It is proposed that autophosphorylation of Chk2 may contribute to Chk2 activation. To fully understand the regulation of Chk2, we mapped an in vitro Chk2 autophosphorylation site at C-terminal serine 516 site (Ser-516). Ser-516 of Chk2 is phosphorylated following radiation in vivo, and this phosphorylation depends on the kinase activity of Chk2. Mutation of this autophosphorylation site (S516A) results in reduced Chk2 kinase activity, suggesting that Chk2 autophosphorylation is required for full kinase activation following DNA damage. Moreover, the S516A mutant of Chk2 is defective in ionizing radiation-induced apoptosis, suggesting that Chk2 autophosphorylation is critical for Chk2 function following DNA damage.  相似文献   

15.
Much effort has been put in the discovery of ways to selectively kill p53-deficient tumor cells and targeting cell cycle checkpoint pathways has revealed promising candidates. Studies in zebrafish and human cell lines suggested that the DNA damage response kinase, checkpoint kinase 1 (Chk1), not only regulates onset of mitosis but also cell death in response to DNA damage in the absence of p53. This effect reportedly relies on ataxia telangiectasia mutated (ATM)-dependent and PIDDosome-mediated activation of Caspase-2. However, we show that genetic ablation of PIDDosome components in mice does not affect cell death in response to γ-irradiation. Furthermore, Chk1 inhibition largely failed to sensitize normal and malignant cells from p53−/− mice toward DNA damaging agents, and p53 status did not affect the death-inducing activity of DNA damage after Chk1 inhibition in human cancer cells. These observations argue against cross-species conservation of a Chk1-controlled cell survival pathway demanding further investigation of the molecular machinery responsible for cell death elicited by forced mitotic entry in the presence of DNA damage in different cell types and model organisms.  相似文献   

16.
Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1β (PP1cβ) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cβ interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.  相似文献   

17.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

18.
Bennett LN  Clarke PR 《FEBS letters》2006,580(17):4176-4181
Claspin is involved in ATR-dependent activation of Chk1 during DNA replication and in response to DNA damage. We show that degradation of Claspin by the ubiquitin-proteosome pathway is regulated during the cell cycle. Claspin is stabilized in S-phase but is abruptly degraded in mitosis and is absent from early G(1) cells in which the phosphorylation of Chk1 by ATR is abrogated. In response to hydroxyurea, UV or aphidicolin, Claspin is phosphorylated in the Chk1-binding domain and its protein levels are increased in an ATR-dependent manner. Thus, the Chk1 pathway is regulated through both phosphorylation of Claspin and its controlled degradation.  相似文献   

19.
MTA1 (metastasis-associated protein 1), an integral component of the nucleosome remodeling and deacetylase complex, has recently been implicated in the ionizing radiation-induced DNA damage response. However, whether MTA1 also participates in the UV-induced DNA damage checkpoint pathway remains unknown. In response to UV radiation, ATR (ataxia teleangiectasia- and Rad3-related) is the major kinase activated that orchestrates cell cycle progression with DNA repair machinery by phosphorylating and activating a number of downstream substrates, such as Chk1 (checkpoint kinase 1) and H2AX (histone 2A variant X). Here, we report that UV radiation stabilizes MTA1 in an ATR-dependent manner and increases MTA1 binding to ATR. On the other hand, depletion of MTA1 compromises the ATR-mediated Chk1 activation following UV treatment, accompanied by a marked down-regulation of Chk1 and its interacting partner Claspin, an adaptor protein that is required for the phosphorylation and activation of Chk1 by ATR. Furthermore, MTA1 deficiency decreases the induction of phosphorylated H2AX (referred to as γ-H2AX) and γ-H2AX focus formation after UV treatment. Consequently, depletion of MTA1 results in a defect in the G2-M checkpoint and increases cellular sensitivity to UV-induced DNA damage. Thus, MTA1 is required for the activation of the ATR-Claspin-Chk1 and ATR-H2AX pathways following UV treatment, and the noted abrogation of the DNA damage checkpoint in the MTA1-depleted cells may be, at least in part, a consequence of dysregulation of the expression of these two pathways. These findings suggest that, in addition to its role in the repair of double strand breaks caused by ionizing radiation, MTA1 also participates in the UV-induced ATR-mediated DNA damage checkpoint pathway.  相似文献   

20.
Chk1 is a critical effector of DNA damage checkpoints necessary for the maintenance of chromosome integrity during cell cycle progression. Here we report, that Chk1 co-localized with the nucleolar marker, fibrillarin in response to radiation-induced DNA damage in human cells. Interestingly, in vitro studies using GST pull down assays identified the dual-specificity serine/threonine nucleolar phosphatase Cdc14B as a Chk1 substrate. Furthermore, Chk1, but not a kinase-dead Chk1 control, was shown to phosphorylate Cdc14B using an in vitro kinase assay. Co-immunoprecipitation experiments using exogenous Cdc14B transfected into human cells confirmed the interaction of Cdc14B and Chk1 during cell cycle. In addition, reduction of Chk1 levels via siRNA or UCN-01 treatment demonstrated that Chk1 activation following DNA damage was required for Cdc14B export from the nucleolus. These studies have revealed a novel interplay between Chk1 kinase and Cdc14B phosphatase involving radiation-induced nucleolar shuttling to facilitate error-free cell cycle progression and prevent genomic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号