首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast Growth Factor 2 (FGF2) is a potent cell survival factor involved in tumor induced angiogenesis. FGF2 is secreted from cells through an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. The molecular mechanism underlying this process depends on a surprisingly small set of trans‐acting factors and cis‐elements in FGF2. With the reconstitution of the core mechanism of FGF2 membrane translocation using purified components, the molecular basis of FGF2 secretion from tumor cells has been revealed.  相似文献   

2.
Fibroblast growth factor 2 (FGF2) is a key signaling molecule in tumor-induced angiogenesis. FGF2 is secreted by an unconventional secretory mechanism that involves phosphatidylinositol 4,5-bisphosphate-dependent insertion of FGF2 oligomers into the plasma membrane. This process is regulated by Tec kinase-mediated tyrosine phosphorylation of FGF2. Molecular interactions driving FGF2 monomers into membrane-inserted FGF2 oligomers are unknown. Here we identify two surface cysteines that are critical for efficient unconventional secretion of FGF2. They represent unique features of FGF2 as they are absent from all signal-peptide-containing members of the FGF protein family. We show that phosphatidylinositol 4,5-bisphosphate-dependent FGF2 oligomerization concomitant with the generation of membrane pores depends on FGF2 surface cysteines as either chemical alkylation or substitution with alanines impairs these processes. We further demonstrate that the FGF2 variant forms lacking the two surface cysteines are not secreted from cells. These findings were corroborated by experiments redirecting a signal-peptide-containing FGF family member from the endoplasmic reticulum/Golgi-dependent secretory pathway into the unconventional secretory pathway of FGF2. Cis elements known to be required for unconventional secretion of FGF2, including the two surface cysteines, were transplanted into a variant form of FGF4 without signal peptide. The resulting FGF4/2 hybrid protein was secreted by unconventional means. We propose that the formation of disulfide bridges drives membrane insertion of FGF2 oligomers as intermediates in unconventional secretion of FGF2.  相似文献   

3.
For a long time, protein transport into the extracellular space was believed to strictly depend on signal peptide-mediated translocation into the lumen of the endoplasmic reticulum. More recently, this view has been challenged, and the molecular mechanisms of unconventional secretory processes are beginning to emerge. Here, we focus on unconventional secretion of fibroblast growth factor 2 (FGF2), a secretory mechanism that is based upon direct protein translocation across plasma membranes. Through a combination of genome-wide RNAi screening approaches and biochemical reconstitution experiments, the basic machinery of FGF2 secretion was identified and validated. This includes the integral membrane protein ATP1A1, the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and Tec kinase, as well as membrane-proximal heparan sulfate proteoglycans on cell surfaces. Hallmarks of unconventional secretion of FGF2 are: (i) sequential molecular interactions with the inner leaflet along with Tec kinase-dependent tyrosine phosphorylation of FGF2, (ii) PI(4,5)P2-dependent oligomerization and membrane pore formation, and (iii) extracellular trapping of FGF2 mediated by heparan sulfate proteoglycans on cell surfaces. Here, we discuss new developments regarding this process including the mechanism of FGF2 oligomerization during membrane pore formation, the functional role of ATP1A1 in FGF2 secretion, and the possibility that other proteins secreted by unconventional means make use of a similar mechanism to reach the extracellular space. Furthermore, given the prominent role of extracellular FGF2 in tumor-induced angiogenesis, we will discuss possibilities to develop highly specific inhibitors of FGF2 secretion, a novel approach that may yield lead compounds with a high potential to develop into anti-cancer drugs.  相似文献   

4.
Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi‐independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5‐biphosphate (PI(4,5)P2) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post‐translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex.  相似文献   

5.
Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate.  相似文献   

6.
Unconventional secretory proteins represent a subpopulation of extracellular factors that are exported from eukaryotic cells by mechanisms that do not depend on the endoplasmic reticulum and the Golgi complex. Various pathways have been implicated in unconventional secretion including those involving intracellular membrane-bound intermediates and others that are based on direct protein translocation across plasma membranes. Interleukin 1β (IL1β) and fibroblast growth factor 2 (FGF2) are classical examples of unconventional secretory proteins with IL1β believed to be present in intracellular vesicles prior to secretion. By contrast, FGF2 represents an example of a non-vesicular mechanism of unconventional secretion. Here, the author discusses the current knowledge about the molecular machinery being involved in FGF2 secretion. To reveal both differential and common requirements, this review further aims at a comprehensive comparison of this mechanism with other unconventional secretory processes. In particular, a potentially general role of tyrosine phosphorylation as a regulatory signal in unconventional protein secretion will be discussed.  相似文献   

7.
8.
E11/podoplanin is critical in the early stages of osteoblast‐to‐osteocyte transitions (osteocytogenesis), however, the upstream events which regulate E11 expression are unknown. The aim of this study was to examine the effects of FGF‐2 on E11‐mediated osteocytogenesis and to reveal the nature of the underlying signaling pathways regulating this process. Exposure of MC3T3 osteoblast‐like cells and murine primary osteoblasts to FGF‐2 (10 ng/ml) increased E11 mRNA and protein expression (p < 0.05) after 4, 6, and 24 hr. FGF‐2 induced changes in E11 expression were also accompanied by significant (p < 0.01) increases in Phex and Dmp1 (osteocyte markers) expression and decreases in Col1a1, Postn, Bglap, and Alpl (osteoblast markers) expression. Immunofluorescent microscopy revealed that FGF‐2 stimulated E11 expression, facilitated the translocation of E11 toward the cell membrane, and subsequently promoted the formation of osteocyte‐like dendrites in MC3T3 and primary osteoblasts. siRNA knock down of E11 expression achieved >70% reduction of basal E11 mRNA expression (p < 0.05) and effectively abrogated FGF‐2‐related changes in E11 expression and dendrite formation. FGF‐2 strongly activated the ERK signaling pathway in osteoblast‐like cells but inhibition of this pathway did not block the ability of FGF‐2 to enhance E11 expression or to promote acquisition of the osteocyte phenotype. The results of this study highlight a novel mechanism by which FGF‐2 can regulate osteoblast differentiation and osteocyte formation. Specifically, the data suggests that FGF‐2 promotes osteocytogenesis through increased E11 expression and further studies will identify if this regulatory pathway is essential for bone development and maintenance in health and disease.  相似文献   

9.
HIV-Tat has been demonstrated to be secreted from cells in a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent manner. Here we show that HIV-Tat forms membrane-inserted oligomers, a process that is accompanied by changes in secondary structure with a strong increase in antiparallel β sheet content. Intriguingly, oligomerization of HIV-Tat on membrane surfaces leads to the formation of membrane pores, as demonstrated by physical membrane passage of small fluorescent tracer molecules. Although membrane binding of HIV-Tat did not strictly depend on PI(4,5)P2 but, rather, was mediated by a range of acidic membrane lipids, a functional interaction between PI(4,5)P2 and HIV-Tat was critically required for efficient membrane pore formation by HIV-Tat oligomers. These properties are strikingly similar to what has been reported previously for fibroblast growth factor 2 (FGF2), providing strong evidence of a common core mechanism of unconventional secretion shared by HIV-Tat and fibroblast growth factor 2.  相似文献   

10.
SK1 (sphingosine kinase 1) plays an important role in many aspects of cellular regulation. Most notably, elevated cellular SK1 activity leads to increased cell proliferation, protection from apoptosis, and induction of neoplastic transformation. We have previously shown that translocation of SK1 from the cytoplasm to the plasma membrane is integral for oncogenesis mediated by this enzyme. The molecular mechanism mediating this translocation of SK1 has remained undefined. Here, we demonstrate a direct role for CIB1 (calcium and integrin-binding protein 1) in this process. We show that CIB1 interacts with SK1 in a Ca2+-dependent manner at the previously identified “calmodulin-binding site” of SK1. We also demonstrate that CIB1 functions as a Ca2+-myristoyl switch, providing a mechanism whereby it translocates SK1 to the plasma membrane. Both small interfering RNA knockdown of CIB1 and the use of a dominant-negative CIB1 we have generated prevent the agonist-dependent translocation of SK1. Furthermore, we demonstrate the requirement of CIB1-mediated translocation of SK1 in controlling cellular sphingosine 1-phosphate generation and associated anti-apoptotic signaling.  相似文献   

11.
In neuroendocrine cells, annexin‐A2 is implicated as a promoter of monosialotetrahexosylganglioside (GM1)‐containing lipid microdomains that are required for calcium‐regulated exocytosis. As soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) require a specific lipid environment to mediate granule docking and fusion, we investigated whether annexin‐A2‐induced lipid microdomains might be linked to the SNAREs present at the plasma membrane. Stimulation of adrenergic chromaffin cells induces the translocation of cytosolic annexin‐A2 to the plasma membrane, where it colocalizes with SNAP‐25 and S100A10. Cross‐linking experiments performed in stimulated chromaffin cells indicate that annexin‐A2 directly interacts with S100A10 to form a tetramer at the plasma membrane. Here, we demonstrate that S100A10 can interact with vesicle‐associated membrane protein 2 (VAMP2) and show that VAMP2 is present at the plasma membrane in resting adrenergic chromaffin cells. Tetanus toxin that cleaves VAMP2 solubilizes S100A10 from the plasma membrane and inhibits the translocation of annexin‐A2 to the plasma membrane. Immunogold labelling of plasma membrane sheets combined with spatial point pattern analysis confirmed that S100A10 is present in VAMP2 microdomains at the plasma membrane and that annexin‐A2 is observed close to S100A10 and to syntaxin in stimulated chromaffin cells. In addition, these results showed that the formation of phosphatidylinositol (4,5)‐bisphosphate (PIP2) microdomains colocalized with S100A10 in the vicinity of docked granules, suggesting a functional interplay between annexin‐A2‐mediated lipid microdomains and SNAREs during exocytosis.  相似文献   

12.
13.
Secretion is a fundamental cellular process in living organisms, from yeast to cells in humans. Since the 1950s, it was believed that secretory vesicles completely merged with the cell plasma membrane during secretion. While this may occur, the observation of partially empty vesicles in cells following secretion suggests the presence of an additional mechanism that allows partial discharge of intra‐vesicular contents during secretion. This proposed mechanism requires the involvement of a plasma membrane structure called ‘porosome’, which serves to prevent the collapse of secretory vesicles, and to transiently fuse with the plasma membrane (Kiss‐and‐run), expel a portion of its contents and disengage. Porosomes are cup‐shaped supramolecular lipoprotein structures at the cell plasma membrane ranging in size from 15 nm in neurons and astrocytes to 100–180 nm in endocrine and exocrine cells. Neuronal porosomes are composed of nearly 40 proteins. In comparison, the 120 nm nuclear pore complex is composed of >500 protein molecules. Elucidation of the porosome structure, its chemical composition and functional reconstitution into artificial lipid membrane, and the molecular assembly of membrane‐associated t‐SNARE and v‐SNARE proteins in a ring or rosette complex resulting in the establishment of membrane continuity to form a fusion pore at the porosome base, has been demonstrated. Additionally, the molecular mechanism of secretory vesicle swelling, and its requirement for intra‐vesicular content release during cell secretion has also been elucidated. Collectively, these observations provide a molecular understanding of cell secretion, resulting in a paradigm shift in our understanding of the secretory process.  相似文献   

14.
15.
Clathrin‐mediated endocytosis is a major route for the retrieval of plasma‐membrane cargoes, and defects of this process can cause catastrophic human dysfunctions. However, the processes governing how a clathrin‐coated profile (ccp) is initiated are still murky. Despite an ever‐growing cast of molecules proposed as triggers of ccp nucleation and increasingly sophisticated bioimaging techniques examining clathrin‐mediated endocytosis, it is yet unknown if ccp formation is governed by a universal mechanism. A recent paper by Cocucci et al. has tracked single‐molecule events to identify that stable accumulation of ccps requires the near‐simultaneous arrival of two AP2 adaptors bridged by one clathrin triskelion. This commentary examines the role of AP2 in cargo‐mediated endocytosis in the light of recent advances in biophotonics, chemical inhibitors and genetics, examines the claims of other molecules to be the initiators of ccp formation and proposes future directions in research into this topic. Editor's suggested further reading in BioEssays: The evolution of dynamin to regulate clathrin‐mediated endocytosis Abstract Clathrin‐mediated endocytosis: What works for small, also works for big Abstract  相似文献   

16.
Double C2 domain protein B (DOC2B) is a high‐affinity Ca2+ sensor that translocates from the cytosol to the plasma membrane (PM) and promotes vesicle priming and fusion. However, the molecular mechanism underlying its translocation and targeting to the PM in living cells is not completely understood. DOC2B interacts in vitro with the PM components phosphatidylserine, phosphatidylinositol (4, 5)‐bisphosphate [PI(4, 5)P2] and target SNAREs (t‐SNAREs). Here, we show that PI(4, 5)P2 hydrolysis at the PM of living cells abolishes DOC2B translocation, whereas manipulations of t‐SNAREs and other phosphoinositides have no effect. Moreover, we were able to redirect DOC2B to intracellular membranes by synthesizing PI(4, 5)P2 in those membranes. Molecular dynamics simulations and mutagenesis in the calcium and PI(4, 5)P2‐binding sites strengthened our findings, demonstrating that both calcium and PI(4, 5)P2 are required for the DOC2B–PM association and revealing multiple PI(4, 5)P2–C2B interactions. In addition, we show that DOC2B translocation to the PM is ATP‐independent and occurs in a diffusion‐like manner. Our data suggest that the Ca2+‐triggered translocation of DOC2B is diffusion‐driven and aimed at PI(4, 5)P2‐containing membranes.   相似文献   

17.
18.
Complexins are soluble proteins that regulate the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes necessary for vesicle fusion. Neuronal specific complexin 1 has inhibitory and stimulatory effects on exocytosis by clamping trans-SNARE complexes in a prefusion state and promoting conformational changes to facilitate membrane fusion following cell stimulation. Complexins are unable to bind to monomeric SNARE proteins but bind with high affinity to ternary SNARE complexes and with lower affinity to target SNARE complexes. Far less is understood about complexin function outside the nervous system. Pancreatic acini express the complexin 2 isoform by RT-PCR and immunoblotting. Immunofluorescence microscopy revealed complexin 2 localized along the apical plasma membrane consistent with a role in secretion. Accordingly, complexin 2 was found to interact with vesicle-associated membrane protein (VAMP) 2, syntaxins 3 and 4, but not with VAMP 8 or syntaxin 2. Introduction of recombinant complexin 2 into permeabilized acini inhibited Ca2+-stimulated secretion in a concentration-dependent manner with a maximal inhibition of nearly 50%. Mutations of the central α-helical domain reduced complexin 2 SNARE binding and concurrently abolished its inhibitory activity. Surprisingly, mutation of arginine 59 to histidine within the central α-helical domain did not alter SNARE binding and moreover, augmented Ca2+-stimulated secretion by 130% of control. Consistent with biochemical studies, complexin 2 colocalized with VAMP 2 along the apical plasma membrane following cholecystokinin-8 stimulation. These data demonstrate a functional role for complexin 2 outside the nervous system and indicate that it participates in the Ca2+-sensitive regulatory pathway for zymogen granule exocytosis.  相似文献   

19.
Various molecular mechanisms of unconventional secretion of fibroblast growth factor 2 and galectin-1 have been proposed. A non-vesicular pathway that is based on direct translocation across the plasma membrane has been described. In other studies, however, release into the extracellular space of cell-derived vesicles was implicated in both FGF-2 and Gal-1 secretion. Such vesicles were proposed to originate either from plasma membrane shedding or by the release of exosomes. Employing an inhibitor of plasma membrane blebbing and based on a quantitative biochemical analysis of cell culture supernatants for vesicles potentially carrying FGF-2 or Gal-1, we demonstrate that both FGF-2 and Gal-1 are not exported by shedding of plasma membrane-derived vesicles.  相似文献   

20.
Information on cadmium (Cd) uptake and transport is essential to understand better the physiology of Cd tolerance in plants. In this study, Cd uptake, translocation, and tolerance were investigated in AHA1 (Arabidopsis plasma membrane H+-ATPase gene) overexpressed plants. Exposed to 10 μM CdCl2, AHA1OX showed a higher root elongation, accumulated more Cd, and maintained better integrity of nucleus membrane of root tips in comparison to the control plant (WT), suggesting that AHA1OX was more Cd tolerant than WT. To investigate Cd tolerance mechanism of AHA1OX plants, we measured the activity of plasma membrane H+-ATPase and the secretion of citrate. Results indicated that treatment with 10 μM of Cd stimulated the activity of plasma membrane H+-ATPase and the secretion of citrate, while 30 μM of Cd inhibited them. AHA1OX had higher activity of H+-ATPase and secretion of citrate than WT. Addition of citrate enhanced root-to-shoot translocation of Cd significantly. A higher root-to-shoot Cd translocation was observed in AHA1OX than in WT plants. Treatment with low temperature or metabolic inhibitor (carbonyl cyanide m-chlorophenylhydrazone) inhibited Cd uptake and translocation. The study of Cd forms using sequential extraction indicated that Cd was mainly present as a protein-bound form, and AHA1OX had more water-soluble Cd than WT. Taken together, our results suggested that the Cd tolerance of AHA1OX was associated with its root-to-shoot Cd translocation and secretion of citrate, which converts Cd2+ into less toxic and more easily transportable forms in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号