首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
It is widely accepted that the activation of the NADPH oxidase of phagocytes is linked to the stimulation of protein kinase C by diacylglycerol formed by hydrolysis of phospholipids. The main source would be choline containing phospholipid via phospholipase D and phosphatidate phosphohydrolase. This paper presents a condition where the activation of the respiratory burst by FMLP correlates with the formation of phosphatidic acid, via phospholipase D, and not with that of diacylglycerol. In fact: 1) in neutrophils treated with propranolol, an inhibitor of phosphatidate phosphohydrolase, FMLP plus cytochalasin B induces a respiratory burst associated with a stimulation of phospholipase D, formation of phosphatidic acid and complete inhibition of that of diacylglycerol. 2) The respiratory burst by FMLP plus cytochalasin B lasts a few minutes and may be restimulated by propranolol which induces an accumulation of phosphatidic acid. 3) In neutrophils stimulated by FMLP in the absence of cytochalasin B propranolol causes an accumulation of phosphatidic acid and a marked enhancement of the respiratory burst without formation of diacylglycerol. 4) The inhibition of the formation of phosphatidic acid via phospholipase D by butanol inhibits the respiratory burst by FMLP.  相似文献   

2.
It is widely believed that the transduction pathway in the activation of the NADPH oxidase by formyl-methionyl-leucyl-phenylalanine (FMLP) in neutrophils involves the stimulation of phosphoinositide hydrolysis, the increase in [Ca2+]i and the activity of the Ca2+ and phospholipid dependent protein kinase C. The results presented here show that the activation of the respiratory burst by FMLP can be dissociated by the stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate and Ca2+ changes. In fact, in neutrophils pretreated (primed) with non stimulatory doses of phorbol myristate acetate the respiratory burst by chemotactic peptide is greatly potentiated while the increase in [3H] inositol phosphates formation and in [Ca2+]i are depressed due to the inhibition of phospholipase C. This finding indicates that FMLP can trigger also a sequence of transduction reactions for the activation of the NADPH oxidase different from that involving the formation of the second messengers diacylglycerol and inositol phosphates and the increase in free Ca2+ concentration.  相似文献   

3.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

4.
In comparative studies of f-met-Leu-Phe (FMLP) and methionine enkephalin (ME) induced polymorphonuclear leukocyte (PMNL) stimulation the following results were obtained: (i) both FMLP and ME increased the intracellular killing (IK) capability of human PMNLs probably through NADPH oxidase activation, (ii) the ME-induced respiratory burst (RB) differed from the chemotactic peptide FMLP-triggered superoxide generation because the former was not accompanied by the activation of the glutathione system and the duration of the superoxide production was prolonged. The reaction was dependent on lipoxygenation, was potentiated by indomethacin (IM) and was inhibited by nordihidro-guairetic acid (NDGA), (iii) both 14C-arachidonic acid (14C-AA) release and leukotriene B4 (LTB4) synthesis of ME-treated PMNLs were elevated as compared to those of FMLP triggered cells. Our results suggest that lipoxygenation and even an increased LTB4 synthesis are involved in the ME-induced RB of leukocytes.  相似文献   

5.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

6.
The role of the activation of phosphoinositide turnover and of the increase in cytosolic free calcium, [Ca2+]i, in the phagocytosis and associated activation of the respiratory burst was investigated. We report the results obtained on the phagocytosis of yeast cells mediated by Con A in normal and in Ca2+-depleted human neutrophils. In normal neutrophils the phagocytosis was associated with a respiratory burst, a stimulation in the formation of [3H] inositol phosphates and [32P]phosphatidic acid, the release of [3H]arachidonic acid, and a rise in [Ca2+]i. Ca2+-depleted neutrophils are able to perform the phagocytosis of yeast cells mediated by Con A and to activate the respiratory burst without stimulation of [3H]inositol phosphates and [32P]phosphatidic acid formation, [3H]arachidonic acid release, and rise in [Ca2+]i. In both normal and Ca2+-depleted neutrophils the phagocytosis and the associated respiratory burst, 1) were inhibited by cytochalasin B; 2) were insensitive to H-7, an inhibitor of protein kinase C; and 3) did not involve GTP-binding protein sensitive to pertussis toxin. These findings indicate that the activation of phosphoinositide turnover, the liberation of arachidonic acid, the rise in [Ca2+]i, and the activity of protein kinase C are not necessarily required for ingestion of Con A-opsonized particles and for associated activation of the NADPH oxidase, the enzyme responsible for the respiratory burst. The molecular mechanisms of these phosphoinositide and Ca2+-independent responses are discussed.  相似文献   

7.
Activation of the respiratory burst in the monocytic cell line U937 by cross-linking human 40-kDa FcR for IgG (Fc gamma RII) with the IgG1 mAb, CIKM5, is dependent on the maturation state of the cell. Addition of anti-Fc gamma RII to undifferentiated cells does not activate the respiratory burst but differentiation with human rIFN-gamma (200 U/ml) for 13 to 15 days results in maximal stimulation by this agonist, with half-maximal responses in cells incubated for 10 to 12 days. During maturation the development of responsiveness to cross-linking Fc gamma RII occurs later than the development of responsiveness to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (maximal responses at 7 to 9 days), or the chemotactic peptide FMLP (half-maximal responses at 7 to 9 days). The late development of maximal Fc gamma RII responses is not associated with either increased Fc gamma RII expression, enhanced calcium mobilization induced by anti-Fc gamma RII, changes in protein kinase C activity (PKC) or a switch in PKC isotype expression. Activation of the respiratory burst via Fc gamma RII may not be mediated by activation of PKC as the kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride and N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride inhibited the Fc gamma RII response by less than 20% at concentrations which inhibit the 12-O-tetradecanoylphorbol-13-acetate-induced respiratory burst by more than 80%. IFN-gamma U937 cells did not metabolize incorporated arachidonate into eicosanoids when stimulated with anti-Fc gamma RII, suggesting that eicosanoids do not mediate activation of the respiratory burst, and this was confirmed by the lack of inhibition by the specific 5'-lipoxygenase and glutathione S-transferase inhibitor, piriprost, and the cyclo-oxygenase inhibitor, indomethacin. In addition there was no significant release of radiolabeled arachidonate in response to anti-Fc gamma RII. The response to anti-Fc gamma RII is inhibited by pertussis toxin, suggesting that signal transduction is via a GTP-binding protein. Agents that elevate intracellular cAMP increased the magnitude of the cAMP transients stimulated by anti-Fc gamma RII and also inhibited the respiratory burst. FMLP responses showed a similar pattern of sensitivity to this range of inhibitors, suggesting that both Fc gamma RII and FMLP receptor share common regulatory mechanisms. However, the termination of the respiratory burst activated via Fc gamma RII and FMLP receptor is independently regulated, in that after FMLP-induced activation there is no subsequent inhibition of the Fc gamma RII-mediated response and vice versa.  相似文献   

8.
The mechanism of phospholipase A2 activation by chemotactic peptide was investigated in human promyelocytic HL60 cells. N-Formyl-methionyl-leucyl-phenylalanine (fMetLeuPhe) and the non-hydrolyzable GTP analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]) induced arachidonic acid release in permeabilized and metabolically inhibited HL60 cells, a preparation in which calcium was buffered and inositol phospholipid hydrolysis was inhibited. Inositol phosphate generation and arachidonic acid were shown to be temporally dissociated. These results suggest that receptor-dependent phospholipase C activity is not required for fMetLeuPhe to induce arachidonic acid release. However, fMetLeuPhe effects were highly calcium-dependent and inhibition of phospholipase C reduced fMetLeuPhe stimulation of arachidonic acid release even in the permeabilized cell preparation. We conclude that although phospholipase A2 activation is linked to the fMetLeuPhe receptor independent of phospholipase C, actions of phospholipase C to mobilize calcium and release diacylglycerol may be important to phospholipase A2 activation in the intact cell.  相似文献   

9.
《The Journal of cell biology》1995,130(5):1197-1205
Fibroblast contraction of stressed collagen matrices results in activation of a cAMP signal transduction pathway. This pathway involves influx of extracellular Ca2+ ions and increased production of arachidonic acid. We report that within 5 min after initiating contraction, a burst of phosphatidic acid release was detected. Phospholipase D was implicated in production of phosphatidic acid based on observation of a transphosphatidylation reaction in the presence of ethanol that resulted in formation of phosphatidylethanol at the expense of phosphatidic acid. Activation of phospholipase D required extracellular Ca2+ ions and was regulated by protein kinase C. Ethanol treatment of cells also inhibited by 60-70% contraction-dependent release of arachidonic acid and cAMP but had no effect on increased cAMP synthesis after addition of exogenous arachidonic acid or on phospholipase A2 activity measured in cell extracts. Moreover, other treatments that inhibited the burst of phosphatidic acid release after contraction--chelating extracellular Ca2+ or down-regulating protein kinase C--also blocked contraction activated cyclic AMP signaling. These results were consistent with the idea that phosphatidic acid production occurred upstream of arachidonic acid in the contraction- activated cAMP signaling pathway.  相似文献   

10.
Although inhibition of polymorphonuclear leukocyte activation by beta-adrenoceptor agonists has been recognized for over a decade, effects have only been observed at high drug concentrations and in the presence of theophylline. In this study, catecholamine and prostaglandin modulation of the respiratory burst was evaluated with respect to the mechanism of polymorphonuclear leukocyte activation. Very low concentrations of isoproterenol and prostaglandin E2 inhibited the respiratory burst when induced by chemotactic peptide (N-formyl-methionyl-leucyl-phenylalanine) or calcium ionophore (A23187, ionomycin), but not when initiated by synthetic diacylglycerol. Because formyl-methionyl-leucyl-phenylalanine and ionophore mobilize calcium and arachidonic acid generation follows an increase in intracellular calcium, the arachidonic acid metabolite leukotriene B4 was studied. Isoproterenol at a very low (0.1 nM) concentration also rapidly inhibited leukotriene B4 generation. Since cyclic AMP was increased by isoproterenol regardless of the means of cell activation, modulation of intracellular calcium was evaluated with the fluorescent probe indo-1. A transient increase in calcium after formyl-methionyl-leucyl-phenylalanine or ionophore (but not oleoyl acetylglycerol) cell activation was inhibited by isoproterenol or prostaglandin E2. These results suggest that adrenergic agonists specifically modulate calcium-dependent polymorphonuclear leukocyte function. Because marked inhibition was observed at very low drug concentrations, cyclic AMP-dependent effects may be important in both homeostatic and therapeutic modulation of inflammatory response.  相似文献   

11.
12.
Carnitine is a physiological cellular constituent that favors intracellular fatty acid transport, whose role on platelet function and O(2) free radicals has not been fully investigated. The aim of this study was to seek whether carnitine interferes with arachidonic acid metabolism and platelet function. Carnitine (10-50 microM) was able to dose dependently inhibit arachidonic acid incorporation into platelet phospholipids and agonist-induced arachidonic acid release. Incubation of platelets with carnitine dose dependently inhibited collagen-induced platelet aggregation, thromboxane A(2) formation, and Ca(2+) mobilization, without affecting phospholipase A(2) activation. Furthermore, carnitine inhibited platelet superoxide anion (O(2)(-)) formation elicited by arachidonic acid and collagen. To explore the underlying mechanism, arachidonic acid-stimulated platelets were incubated with NADPH. This study showed an enhanced platelet O(2)(-) formation, suggesting a role for NADPH oxidase in arachidonic acid-mediated platelet O(2)(-) production. Incubation of platelets with carnitine significantly reduced arachidonic acid-mediated NADPH oxidase activation. Moreover, the activation of protein kinase C was inhibited by 50 microM carnitine. This study shows that carnitine inhibits arachidonic acid accumulation into platelet phospholipids and in turn platelet function and arachidonic acid release elicited by platelet agonists.  相似文献   

13.
We have investigated the inhibitory effect of 2-hydroxymethyl-1-naphthol diacetate (TAC) on the respiratory burst of rat neutrophils and the underlying mechanism of action was also assessed in this study. TAC caused concentration-related inhibition of the formylmethionyl-leucyl-phenylalanine (fMLP) plus dihydrocytochalasin B (CB)- and phorbol 12-myristate 13-acetate (PMA)-induced superoxide anion (O2*-) generation (IC50 10.2+/-2.3 and 14.1+/-2.4 microM, respectively) and O2 consumption (IC50 9.6+/-2.9 and 13.3+/-2.7 microM, respectively) of neutrophils. TAC did not scavenge the generated O2*- during dihydroxyfumaric acid autoxidation. TAC inhibited both the transient elevation of [Ca2+]i in the presence or absence of [Ca2+]o (IC50 75.9+/-8.9 and 84.7+/-7.9 microM, respectively) and the generation of inositol trisphosphate (IP3) (IC50 72.0+/-9.7 microM) in response to fMLP. Cytosolic phospholipase C (PLC) activity was also reduced by TAC at a same range of concentrations. The PMA-induced PKC-beta associated to membrane was attenuated by TAC (about 80% inhibition at 30 microM). Upon exposure to fMLP, the cellular cyclic AMP level was decreased in neutrophils pretreated with TAC. TAC attenuated fMLP-induced phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 (IC50 17.4+/-1.7 microM), but not p38. The cellular formation of phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) induced by fMLP was inhibited by TAC in a concentration-dependent manner (IC50 25.4+/-2.4 and 25.9+/-1.4 microM, respectively). TAC had no effect on the O2*- generation of PMA-stimulated and arachidonic acid (AA)-stimulated NADPH oxidase preparations. However, TAC caused concentration-related decrease of the membrane associated p47phoX in PMA-stimulated neutrophils (about 80% inhibition at 30 microM). We conclude that inhibition by TAC of the neutrophil respiratory burst is probably attributable to the blockade of the p42/44 MAPK and phospholipase D (PLD) pathways, the membrane translocation of PKC, and to the failure in assembly of a functional NADPH oxidase complex. Blockade of the PLC pathway by TAC probably plays a minor role.  相似文献   

14.
Stimulation of the respiratory burst of human neutrophils by fMet-Leu-Phe (in the absence of cytochalasin B) is largely unaffected when the activities of protein kinase C and phospholipase D are inhibited. This has been confirmed using three separate assays to measure the respiratory burst. However, whilst these enzymes are not required for the initiation or maximal rate of oxidant generation, they are required to sustain oxidase activity. In contrast, in the presence of cytochalasin B, fMet-Leu-Phe stimulated oxidase activity is much more dependent on phospholipase D activity. It is proposed that (in the absence of cytochalasin B) activation of the NADPH oxidase utilises cytochrome b molecules that are already present on the plasma membrane and activation occurs independently of phospholipase D and protein kinase C. Once these complexes are inactivated, then new cytochrome b molecules must be recruited from sub-cellular stores. This translocation and/or activation of these molecules is phospholipase D dependent. Some support for this model comes from the finding that the translocation of CD11b (which co-localises with cytochrome b) onto the cell surface is phospholipase D dependent.Abbreviations GM-CSF granulocyte-macrophage colony-stimulating factor - fMet-Leu-Phe N-formylmethionyl-leucyl-phenylalanine luminol 5-amino-2,3-dihydro-1,4-phthalazinedione, O2,-superoxide radical  相似文献   

15.
In the chain of events by which chemotactic peptides stimulate NADPH oxidase-catalyzed superoxide formation in human neutrophils, the involvements of a pertussis toxin-sensitive guanine nucleotide-binding protein (N-protein), mobilization of intracellular calcium and protein kinase C stimulation have been proposed. Superoxide formation was studied in membranes from human neutrophils; NADPH oxidase was stimulated by arachidonic acid in the presence of neutrophil cytosol. Fluoride and stable GTP analogues, such as GTP gamma S and GppNHp, which all activate N-proteins, enhanced NADPH oxidase activity up to 4-fold. GDP beta S inhibited the effect of GTP gamma S. These data suggest that NADPH oxidase is regulated by an N-protein, independent of an elevation of the cytoplasmic calcium concentration.  相似文献   

16.
Staurosporine (STAR), a potent protein kinase C (PKC) antagonist, was found to modulate the chemoattractant-induced respiratory burst of human polymorphonuclear leukocytes (PMNs) according to drug concentration. Low STAR concentrations from 10 to 200 nM potentiated the N-formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet activating factor (Paf)-induced respiratory burst, affecting both the initial rate and the total amount of superoxide anion generated. The maximal increase occurred in the presence of 100 nM STAR and optimal fMLP concentration and reached 60-100% of control values. Above 250 nM, STAR inhibited the respiratory burst with an IC50 of 360 and 320 nM for fMLP and Paf, respectively. The respiratory burst induced by PKC activators such as phorbol myristate acetate or phorbol 12, 13 dibutyrate was inhibited effectively by STAR, with a low IC50 (25 nM) for both stimuli. Thus, the use of low STAR concentrations points to two possible roles of PKC in the regulation of NADPH oxidase activity, i.e. a positive regulation in phorbol ester-treated cells and a negative regulation in chemoattractant-stimulated PMNs.  相似文献   

17.
In dimethylsulfoxide-differentiated HL60 granulocytes, the chemotactic peptide N-formyl-Met-Leu-Phe (FMLP) augments arachidonic acid (AA) release via phospholipase A2 activity induced by the Ca2+-ionophore, A23187. Evidence indicates that this augmentation is mediated by diacylglycerols formed endogenously during FMLP receptor activation: The augmentation is mimicked by the synthetic diglyceride 1-oleoyl-2-acetyl-glycerol (OAG) and the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate; Pertussis toxin inhibits FMLP-induced augmentation but not OAG-induced augmentation: At suboptimal concentrations FMLP and OAG act cooperatively to augment ionophore A23187-induced AA release but not at optimal concentrations. These data indicate that phospholipase A2 activation in FMLP-stimulated HL60 granulocytes involves cooperative interactions between diacylglycerol formed endogenously and Ca2+. Interestingly, this effect of diacylglycerol appears not to be mediated by protein kinase C, since a specific protein kinase C inhibitor, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) does not inhibit receptor-mediated release of AA by stimulated HL60 granulocytes.  相似文献   

18.
Norathyriol, aglycone of a xanthone C-glycoside mangiferin isolated from Tripterospermum lanceolatum, concentration dependently inhibited the formylmethionyl-leucyl-phenylalanine (fMLP)-induced superoxide anion (O2˙−) generation and O2 consumption in rat neutrophils. In cell-free oxygen radical generating system, norathyriol inhibited the O2˙− generation during dihydroxyfumaric acid (DHF) autoxidation and in hypoxanthine-xanthine oxidase system. fMLP-induced transient elevation of [Ca2+]i and the formation of inositol trisphosphate (IP3) were significantly inhibited by norathyriol (30 μM) (about 30 and 46% inhibition, respectively). Norathyriol concentration dependently suppressed the neutrophil cytosolic phospholipase C (PLC). In contrast with the marked attenuation of fMLP-induced protein tyrosine phosphorylation (about 70% inhibition at 10 μM norathyriol), norathyriol only slightly modulated the phospholipase D (PLD) activity as determined by the formation of phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt). Norathyriol did not modulate the intracellular cyclic AMP level. In the presence of NADPH, the phorbol 12-myristate 13-acetate (PMA)-activated particulate NADPH oxidase activity was suppressed by norathyriol in a concentration-dependent manner and the inhibition was noncompetitive with respect to NADPH. Norathyriol inhibited the iodonitrotetrazolium violet (INT) reduction in arachidonic acid (AA)-activated cell-free NADPH oxidase system at the same concentration range as those used in the suppression of PMA-activated particulate NADPH oxidase activity. Taken together, these results suggest that the scavenging ability of norathyriol contributes to the reduction of generated O2˙−, however, the inhibition of O2˙− generation from neutrophils by norathyriol is attributed to the blockade of PLC pathway, the attenuation of protein tyrosine phosphorylation, and to the suppression of NADPH oxidase through the interruption of electrons transport.  相似文献   

19.
The ability of three different peptides, substance P (SP), FMLP and melittin, to activate eosinophils purified from the peritoneal cavity of human serum-treated guinea pigs was investigated. Degranulation (eosinophil peroxidase, EPO), oxidative burst (O2-), [Ca2+]i mobilization, and arachidonic acid metabolism (thromboxane B2, TXB2) were used as indices of eosinophil activation. SP (100 nM to 100 microM), FMLP (1 to 100 microM) and melittin (10 nM to 100 microM) induced EPO release but only FMLP (1 to 100 microM) led to an elevation of [Ca2+]i. The melittin- and SP-induced EPO secretion occurred at both cytotoxic and noncytotoxic concentrations as assessed by lactate dehydrogenase release. In addition, the effect of SP was not inhibited by the SP analogue (D-Pro4, D-Trp7,9,10)SP(4-11) and SP failed to promote the generation and subsequent release of TXA2. In contrast, FMLP (10 to 100 microM) stimulated the release of TXB2 from guinea pig eosinophils that was selectively inhibited by pretreatment of the cells with BOC-FMLP. On an equimolar basis (1 microM), melittin was approximately fivefold more active at promoting TXB2 release than FMLP. The results indicate that eosinophils respond to the three peptides, SP, melittin, and FMLP in differential fashion. We conclude that activation of guinea pig eosinophils by FMLP is likely to be receptor-mediated whereas the actions of SP and melittin may act through nonspecific peptide-membrane phospholipid interactions.  相似文献   

20.
Formylated peptides specifically activate many of the neutrophil functions; their action is mediated via formyl peptide receptors (FPRs). FPRs belong to the family of receptors having seven transmembrane-spanning domains and coupled with G-proteins (GPCR). About a dozen of highly homologous genes of FPRs were found to be localized in mouse chromosome 17. By binding with labeled N-formyl-Met-Leu-Phe (fMLF), FPRs are classified as receptors with high (FPR1) and low (FPR2 and FPR3/FPRL1) affinity to formyl peptide. Binding of formyl peptide with FPRs triggers the complex signaling events, the most studied are: activation of phospholipase C (PLC) with subsequent calcium signaling; launching of mitogen activated protein kinases (MAPKs) cascade pathway, and activation of phosphoinositol-3-kinase (PI3K) cascades. As we have shown previously, the priming of the respiratory burst of mice neutrophils occurs under the cell activation by fMLF in high doses only, i.e., it is necessary to activate low affinity FPRs. Besides, the usage of the specific MEK and p38MAPK inhibitors induced significant suppression of the response to 1 μM fMLM, while the response to 50 μM fMLF increased in the presence of the inhibitors. We suggest that there is a signal divergence upon activation of high and low affinity fMLF receptors, and small G protein dependent signaling pathways could be alternative to activate NADPH oxidase. Here we demonstrate that Ras-proteins participate in the respiratory burst activation, especially in activation via the high affinity fMLF receptors. Activation of the Rho- and Rac-proteins induced the down-regulation of the respiratory burst under the stimulation of high affinity FPRs. The inhibition of the Rho-proteins almost completely suppressed the respiratory burst activated via the high and low affinity receptors, probably due to inability to assemble of the cytoskeleton proteins and NADPH oxidase components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号