首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have succeeded in the cloning of alkaline phosphatase gene, haalp, from moderate halophile Halomonas sp. 593. A deduced amino acid sequence showed a high ratio of acidic to basic amino acids, characteristic of halophilic proteins. The gene product was efficiently expressed in Escherichia coli BL21 Star (DE3) pLysS, but in an inactive form. The purified recombinant HaALP was separated into four fractions by gel filtration. When they were dialyzed against 50 mM Tris-HCl (pH 8.0)/2 mM MgCl? buffer containing 3 M NaCl, one of these four fractions was activated to almost full activity. This fraction contained a folding intermediate that was converted to the native structure by the salt. Among the additional salts tested, i.e., KCl, KBr, LiCl, MgCl?, (NH?)?SO?, and Na?SO?, only Na?SO? was effective, suggesting the importance of Na ion.  相似文献   

2.
Two Gram-negative moderately halophilic bacterial strains, designated Ad-1(T) and C-12, were isolated from Aiding salt lake of Xinjiang in China. The novel isolates were subjected to a polyphasic taxonomic study. Cells of these strains were cocci or short rods and motile with polar flagella. Colonies produced brown-red pigment. The isolates grew in the range of 0.5-25% (w/v) NaCl, pH 5.5-10.5 and 4-45°C. Analysis of their 16S rRNA gene sequences indicated that strains Ad-1(T) and C-12 belonged to the genus Halomonas showing 92.7-98.4% similarity with the type species. The isoprenoid quinones of the isolates were Q-9 and Q-8. The major cellular fatty acids were C18:1ω7c, C16:1ω7c/6c, C16:0, C12:0-3OH and C10:0. The DNA G + C contents of strains Ad-1(T) and C-12 were 64.6 and 63.9 mol%, respectively. The DNA relatedness between the two isolates was 89.2%. The similarities of these newly isolated strains with closely related type strains were lower than 35% at the genetic level. Based on phenotypic, chemotaxonomic and genetic characteristics, the representative strain Ad-1(T) is considered to be a novel species of the genus Halomonas, for which the name Halomonas aidingensis sp. nov. is proposed, with Ad-1(T) (= CGMCC 1.10191(T) = NBRC 106173(T)) as the type strain.  相似文献   

3.
We report the draft genome sequence of arsenite-oxidizing Halomonas sp. strain HAL1, isolated from the soil of a gold mine. Genes encoding proteins involved in arsenic resistance and transformation, phosphate utilization and uptake, and betaine biosynthesis were identified. Their identification might help in understanding how arsenic and phosphate metabolism are intertwined.  相似文献   

4.
Halomonas maura is a moderately halophilic bacterium which lives in saline soils and synthesises an exopolysaccharide known as mauran. Strain S-31T grew in a nitrogen-free medium under an N2 atmosphere; the acetylene reduction assay proved positive under specific conditions. We identified the nifH gene in this strain by using degenerate oligonucleotides designed from highly preserved gene sequences obtained from the alignment of a large number of nifH sequences from different microorganisms. Our results lead us to conclude that H. maura is capable of fixing nitrogen under microaerobic conditions.  相似文献   

5.
The isolation and characterization of a denitrifying bacterium that is both moderately halophilic and alkaliphilic is described. The organism was isolated for use in the development of a bioprocess that could potentially reduce the costs of ion exchange resin regenerant disposal. The process of ion exchange, after resin regeneration, produces a briny, alkaline waste that is difficult and expensive to dispose. The biological removal of nitrate and subsequent reuse of these brines can potentially provide a cost-saving alternative to disposing of this waste product. To achieve our objective, a moderately halophilic, alkaliphilic bacterium was isolated from sediment samples taken from the salt plain of Alkali Lake in Washington State (USA). The haloalkaliphilic bacterium, designated strain 4A, is motile with rod-shaped cells that are 3 to 5 microm long and 1 microm wide. Electron acceptors used include oxygen, nitrate, and nitrite. In addition, it has similar specific nitrate reduction rates and biomass yields as non-halophilic denitrifying bacteria. It is capable of using a variety of electron donors. This organism can grow at NaCl concentrations ranging from 0.2 to 4.5 M with optimum growth occurring at 1.5 M and pH values ranging from 6 to 12 with 9.5 being the optimum pH. The temperature range for growth of strain 4A is 4-50 degrees C with optimal growth occurring at 30 degrees C. The G + C content is 66 mol%. Phylogenetic analyses based upon 16S rDNA gene sequence placed isolate 4A in the genus Halomonas. In addition, DNA-DNA hybridization experiments clearly indicate that it is a unique species. Phenotypic and phylogenetic studies indicate that isolate 4A represents a new species. We propose the name Halomonas campisalis for this species and strain 4A (ATCC 700597) as the type strain. Due to its denitrification ability, broad carbon utilization range and its high salinity and pH tolerance this organism, and similar ones, hold promise for the treatment of saline, alkaline waste.  相似文献   

6.
Two Gram-positive, rod-shaped moderately halophilic bacterial strains, designated AD7-25T and AB-11, were isolated from Aiding and Manasi salt lakes in Xinjiang of China, respectively. The strains were found to be able to grow at NaCl concentrations of 0–21 % (w/v), with optimum growth occurring at 6–8 % (w/v) NaCl. The optimal temperature and pH for growth were determined to be 33–37 °C and pH 7.0–7.5. Cells of the strains are motile by means of polar flagella. Both strains can produce ellipsoidal spores. The major cellular fatty acids were identified as anteiso-C15:0, iso-C15:0, iso-C14:0, anteiso-C17:0 and iso-C16:0. The diamino acid in the peptidoglycan and the major quinone system were determined to be meso-diaminopimelic acid (meso-DAP) and MK-7, respectively. The DNA G+C contents of stains AD7-25T and AB-11 were 39.8 and 40.0 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that these two novel strains are closely related to the genus Oceanobacillus showing 90–99.5 % similarity with respect to type strains. These two novel strains were most closely related to Oceanobacillus oncorhynchi subsp. incaldanensis DSM 16557T (99.1 and 99.5 %), followed by O. oncorhynchi subsp. oncorhynchi JCM 12661T (99.1 and 99.4 %), Oceanobacillus neutriphilus CGMCC 1.7693T (97.0 and 97.5 %), Oceanobacillus sojae JCM 15792T (97.6 and 98.0 %) and Oceanobacillus locisalsi KCTC 13253T (96.5 and 96.9 %). The DNA–DNA hybridization data indicated that DNA relatedness between strains AD7-25T and AB-11 was 91.0 %, and the genomic homology of representative strain AD7-25T with O. oncorhynchi subsp. incaldanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T, O. neutriphilus CGMCC 1.7693T, O. sojae JCM 15792T and O. locisalsi KCTC 13253T were 41, 39, 20, 23 and 17 %, respectively. On the basis of phenotypic and phylogenetic distinctiveness, strains AD7-25T and AB-11 should be assigned to the genus Oceanobacillus as a new species, for which the name Oceanobacillus aidingensis sp. nov. was proposed. The type strain is AD7-25T (=CGMCC 1.9106 T = NBRC 105904T).  相似文献   

7.
The taxomony of strain CRSS (DSM 15686(T)=ATCC BAA-848(T)) isolated from Cape Russell in Antarctica (Ross Sea, 74 52.35 S 163 53.03 E) was investigated in a polyphasic approach. The morphological, physiological and genetic characteristics were compared with that of related species of the genus Halomonas. The isolate grew optimally at pH 9.0, 10% NaCl at 30 degrees C. The cells were Gram-negative aerobic rods able to produce exopolysaccharide. They accumulated glycine-betaine, as a major osmolyte, with minor components ectoine and glutamate. The strain CRSS biosynthetised alpha-glucosidase. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as major components. Ubiquinone with nine repetitive unities (Q9) was the only quinone found and the fatty acid composition was dominated by C18:1 (53%). The G+C content of DNA was 55.0mol% and its phylogenetic position was established by 16S rRNA gene sequencing as a member of the genus Halomonas. For physiological, chemotaxonomic and genetic features (DNA-DNA hybridisation) it is proposed to classify the isolate as a new species for which we propose the name Halomonas alkaliantarctica sp. nov.  相似文献   

8.
Two Gram-positive, moderately halophilic bacteria, designated strains 29CMIT and 53CMI, were isolated from salted hides. Both strains were non-motile, strictly aerobic cocci, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–12.5% [w/v] NaCl), between pH 5.0 and 10.0 (optimal growth at pH 7.5) and at temperatures between 15 and 40 °C (optimal growth at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed a similarity of 98.7% and were closely related to species of the genus Salimicrobium, within the phylum Firmicutes. Strains 29CMIT and 53CMI exhibited 16S rRNA gene sequence similarity values of 97.9–97.6% with Salimicrobium album DSM 20748T, Salimicrobium halophilum DSM 4771T, Salimicrobium flavidum ISL-25T and Salimicrobium luteum BY-5T. The DNA G+C content was 50.7 mol% and 51.5 mol% for strains 29CMIT and 53CMI, respectively. The DNA–DNA hybridization between both strains was 98%, whereas the values between strain 29CMIT and the species S. album CCM 3517T, S. luteum BY-5T, S. flavidum ISL-25T and S. halophilum CCM 4074T were 45%, 28%, 15% and 10%, respectively, showing unequivocally that strains 29CMIT and 53CMI constitute a new genospecies. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C15:0 and iso-C14:0. The main respiratory isoprenoid quinone was MK-7, although small amounts of MK-6 were also found. The polar lipids of the type strain consist of diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and one glycolipid. The peptidoglycan type is A1γ, with meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of the phylogenetic analysis, and phenotypic, genotypic and chemotaxonomic characteristics, we propose strains 29CMIT and 53CMI as a novel species of the genus Salimicrobium, with the name Salimicrobium salexigens sp. nov. The type strain is 29CMIT (=CECT 7568T = JCM 16414T = LMG 25386T).  相似文献   

9.
A moderately halophilic bacterium, designated strain 9-2T, was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5–14 % (w/v) (optimum, 7–10 %, w/v), at temperatures of 10–45 °C (optimum 25–30 °C) and at pH 5.0–10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2T is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502T (96.68 %), Halomonas campaniensis DSM 1293T (96.46 %), Halomonas ventosae DSM 15911T (96.27 %) and Halomonas kenyensis DSM 17331T (96.27 %). The DNA–DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2T and H. desiderata DSM 9502T. The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2T is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2T (=DSM 26881T = CGMCC 1.12467T).  相似文献   

10.
A gram-negative, moderately halophilic bacterium was isolated from ?amalt? Saltern area, located in the Aegean Region of Turkey. Analysis of its 16S rRNA gene sequence and physiological characteristics showed that this strain belonged to the genus Halomonas ; hence, it was designated as Halomonas sp. strain AAD12. The isolate tolerated up to 800 mg?L(-1) phenol; however, at elevated concentrations, phenol severely retarded cell growth. The increase in lag phase with increasing phenol concentrations indicated that the microorganism was undergoing serious adaptative changes. To understand the physiological responses of Halomonas sp. strain AAD12 to phenol, a 2-dimensional electrophoresis approach combined with mass spectrometric analysis was used. This approach showed that the expression of 14 protein spots were altered as phenol concentration increased from 200 to 800 mg?L(-1). Among the identified proteins were those involved in protein biosynthesis, energy, transport, and stress metabolism. So far, this is the first study on phenolic adaptation of a gram-negative, moderately halophilic bacteria using proteomic tools. The results provided new insights for understanding the general mechanism used by moderately halophilic bacteria to tolerate phenol and suggested the potential for using these microorganisms in bioremediation.  相似文献   

11.
Ten Gram-strain-negative, facultatively anaerobic, moderately halophilic bacterial strains, designated AL184T, IB560, IB563, IC202, IC317, MA421, ML277, ML318, ML328A and ML331, were isolated from water ponds of five salterns located in Spain. The cells were motile, curved rods and oxidase and catalase positive. All of them grew optimally at 37 °C, at pH 7.2–7.4 and in the presence of 7.5% (w/v) NaCl. Based on phylogenetic analyses of the 16S rRNA, the isolates were most closely related to Salinivibrio sharmensis BAGT (99.6–98.2% 16S rRNA gene sequence similarity) and Salinivibrio costicola subsp. costicola ATCC 35508T (99.0–98.1%). According to the MLSA analyses based on four (gyrB, recA, rpoA and rpoD) and eight (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA) concatenated gene sequences, the most closely relatives were S. siamensis JCM 14472T (96.8–95.4% and 94.9–94.7%, respectively) and S. sharmensis DSM 18182T (94.0–92.6% and 92.9–92.7%, respectively). In silico DNA–DNA hybridization (GGDC) and average nucleotide identity (ANI) showed values of 23.3–44.8% and 80.2–91.8%, respectively with the related species demonstrating that the ten isolates constituted a single novel species of the genus Salinivibrio. Its pangenome and core genome consist of 6041 and 1230 genes, respectively. The phylogeny based on the concatenated orthologous core genes revealed that the ten strains form a coherent phylogroup well separated from the rest of the species of the genus Salinivibrio. The major cellular fatty acids of strain AL184T were C16:0 and C18:1. The DNA G + C content range was 51.9–52.5 mol% (Tm) and 50.2–50.9 mol% (genome). Based on the phylogenetic-phylogenomic, phenotypic and chemotaxonomic data, the ten isolates represent a novel species of the genus Salinivibrio, for which the name Salinivibrio kushneri sp. nov. is proposed. The type strain is AL184T (= CECT 9177T = LMG 29817T).  相似文献   

12.
Three moderately halophilic strains, TMW 2.2308T, TMW 2.2299 and TMW 2.2304, were isolated from a lupine-based moromi fermentation. Initial identification based on their low molecular sub-proteome using mass spectrometry showed relation to the genus Halomonas, however, low score values indicated novelty. The comparison of 16S rRNA gene sequences placed these strains within the genus Chromohalobacter with C. japonicus CECT 7219T (99.67% 16S rRNA sequence similarity to strain TMW 2.2308T), C. canadensis DSM 6769T (99.54%) and C. beijerinckii LMG 2148T (99.32%) being their closest relatives. However, average nucleotide highest identity values of TMW 2.2308T to C. beijerinckii LMG 2148T of 93.12% and 92.88% to C. japonicus CECT 7219T demonstrate that it represents a novel species within the genus Chromohalobacter with additional strains TMW 2.2299 (96.91%) and TMW 2.2304 (96.98%). The isolated strains were non-spore-forming, motile and able to grow at temperatures from 5 to 45 °C with an optimum at 37 °C. Growth of TMW 2.2308T occurs at 5 to 25% (w/v) NaCl with optimum growth between 10 and 12.5%. The genome of TMW 2.2308T has a size of 3.47 Mb and a G + C content of 61.0 mol%. The polyphasic evidence lead to the classification of TMW 2.2308T, TMW 2.2299 and TMW 2.2304 as members of a novel species of the genus Chromohalobacter. We propose a novel species as Chromohalobacter moromii sp. nov., with TMW 2.2308T (=DSM 113153T =CECT 30422T) as the type strain.  相似文献   

13.
14.
【目的】了解一株来自新疆盐碱湖的中度嗜盐菌(Bacillus sp.BZ-SZ-XJ39)的微生物学特性,为进一步阐明该菌独特的盐适应机制奠定基础。【方法】通过16S rRNA基因序列分析、G+C mol%含量测定、细胞形态和菌落观察、培养条件确定、营养与生理生化指标测定以及细胞化学组分分析等描述该菌的生物特性。【结果】基于16S rRNA基因序列的同源性和系统发育树分析,菌株BZ-SZ-XJ39与Bacillus saliphilus 6AGT(序列相似性为97.5%),Bacillus daliensis DLS13T(96.5%),Bacillus luteus JC167T(96.2%),Bacillus chagannorensis CG-15T(95.5%)和Bacillus agaradhaerens DSM8721T(95.3%)有密切的亲缘关系。基因组DNA G+C含量为44.4 mol%±1.2 mol%(Tm)。菌株BZ-SZ-XJ39为好氧、短杆状、革兰氏阳性菌。菌落呈黄色、圆形凸起、表面光滑且边缘整齐。菌株生长盐度范围为0.5%–28%(最适8%),pH范围为5.5–9.5(最适pH 8.0),温度范围为4–41oC(最适33oC)。菌株BZ-SZ-XJ39合成的主要脂肪酸包括anteiso-C15:0(50.2%)和anteiso-C17:0(16.3%)。合成极性脂为磷脂(PL)、磷脂酰乙醇胺(PE)、磷脂酰甘油(PG)、二磷脂酰甘油(DPG)和磺酸基异鼠李糖基二脂酰基甘油(SQDG)。呼吸醌类型为甲基萘醌(MK-7)。菌株BZ-SZ-XJ39已经在中国普通微生物菌种保藏管理中心(CGMCC1.12936)和日本微生物菌种保藏中心(JCM30194)冻干保藏,在Gen Bank中的序列注册号为KP456019。【结论】基于BZ-SZ-XJ39菌株的遗传型、表型、生理生化以及化学组成特征,初步确定该菌为Bacillus属中的一个新成员。研究将为探索生命在高盐环境中存在的本质提供新素材,也可为生物技术的潜在应用提供新视角。  相似文献   

15.
16.
17.
We report the draft genome sequence of Halomonas sp. strain KM-1, which was isolated in Ikeda City, Osaka, Japan, and which produces the bioplastic poly(3-hydroxybutyrate). The total length of the assembled genome is 4,992,811 bp, and 4,220 coding sequences were predicted within the genome. Genes encoding proteins that are involved in the production and depolymerization of poly(3-hydroxybutyrate) were identified. The identification of these genes might be of use in the production of the bioplastic poly(3-hydroxybutyrate) and its monomer 3-hydroxybutyrate.  相似文献   

18.
A Gram-negative, non-endospore-forming, rod shaped, strictly aerobic, moderately halophilic bacterium, designated strain M9BT, was isolated from the hypersaline lake Aran-Bidgol in Iran. Cells of strain M9BT were found to be motile and produce colonies with an orange-yellow pigment. Growth was determined to occur between 5 and 20 % (w/v) NaCl and the isolate grew optimally at 7.5–10 % (v/w) NaCl. The optimum pH and temperature for growth of the strain were determined to be pH 7.0 and 35 °C, respectively, while it was able to grow over pH and temperature ranges of 6–8 and 25–45 °C, respectively. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain M9BT is a member of the genus Marinobacter. The closest relative to this strain was found to be Marinobacter hydrocarbonoclasticus MBIC 1303T with a similarity level of 97.7 %. DNA–DNA hybridization between the novel isolate and this phylogenetically related species was 13 ± 2 %. The major cellular fatty acids of the isolate were identified as C16:0, C19:1 ω6c, C18:1 ω9c and C16:1 ω9c. The polar lipid pattern of strain M9BT was determined to consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and three phospholipids. Ubiquinone 9 (Q-9) was the only lipoquinone detected. The G+C content of the genomic DNA of this strain was determined to be 58.6 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that this strain represents a novel species of the genus Marinobacter, for which the name Marinobacter persicus sp. nov. is proposed. The type strain of Marinobacter persicus is strain M9BT (=IBRC-M 10445T = CCM 7970T = CECT 7991T = KCTC 23561T).  相似文献   

19.
A novel Gram-negative, aerobic, slightly halophilic, yellow-pigmented, oxidase-negative, Voges–Proskauer positive, non-spore-forming bacterium, designated YIM M 13059T, was isolated from a sediment sample collected from the South China Sea at a depth of 310 m. Optimal growth was found to occur at 28–30 °C, pH 7.0 and in the presence of 3–4 % (w/v) NaCl. Cells were observed to be rod-shaped and motile by peritrichous flagella. The polar lipids of strain YIM M 13059T were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a ninhydrin-positive phospholipid, one glycolipid and two unknown phospholipids. The predominant respiratory quinone was determined to be Q-9. The major fatty acids were identified as C18:1 ω7c, C16:1 ω6c/C16:1 ω7c, C16:0 and C12:0 3-OH. The genomic DNA G+C content was determined to be 54.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate belongs to the genus Halomonas in the family Halomonadaceae. The 16S rRNA gene sequence similarities between strain YIM M 13059 T and the type strains of members of the genus Halomonas were in the range 93.3–98.3 %. However, the levels of DNA–DNA relatedness values between YIM M 13059 and the type strains of the most closely related species, Halomonas zhangjiangensis, Halomonas variabilis, Halomonas neptunia, Halomonas boliviensis and Halomonas sulfadieris were 50.2 ± 0.68 %, 46.8 ± 1.9 %, 28.5 ± 0.74 %, 42.9 ± 0.55 % and 37.1 ± 0.68 %, respectively. Based on phylogenetic, chemotaxonomic and phenotypic data, the strain YIM M 13059T is proposed to represent a novel member of the genus Halomonas, with the name Halomonas nanhaiensis sp. nov. The type strain is YIM M 13059T (=JCM 18142T =CCTCC AB 2012911T).  相似文献   

20.
Aims: Virgibacillus sp. SK37 isolated from Thai fish sauce produced numerous NaCl‐activated subtilisin‐like proteinases. Our objectives were to purify, characterize and identify these extracellular proteinases. Methods and Results: Three major subtilisin‐like enzymes including 19, 34 and 44 kDa were partially purified and showed maximum activity at pH 8, 55–60°C, 25–30% NaCl and 70–100 mmol l?1 CaCl2. Enzymes showed stability at 0–30% NaCl and <20 mmol l?1 CaCl2 and were completely inhibited by phenylmethanesulphonyl fluoride but not by ethylenediaminetetraacetic acid. The isoelectric points of 19‐, 34‐ and 44‐kDa proteinases were at 3·6, 5·2 and 3·8, respectively, based on 2D electrophoresis. Peptide mass fingerprint and de novo peptide homology analysis of tryptic peptides using MALDI‐TOF and LC–MS/MS, respectively, suggested that all three enzymes were novel and homologous to bacillopeptidase F. Conclusions: The three major proteinases are a member of bacillopeptidase F‐like enzymes exhibiting thermophilic and halotolerant characteristics with high stability at 30% NaCl. Significance and Impact of the Study: This is the first report on bacillopeptidase F‐like proteinases in genus Virgibacillus with a distinct halotolerant feature. They showed potential to be a processing aid for food and biotechnological applications, particularly in high salt condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号