首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
蝙蝠的食虫性   总被引:5,自引:0,他引:5  
“早晨4点钟,我从吊床上醒来时忽然发现自己身上到处是凝固的血迹,有的伤口还在流血。上帝啊,到底发生了什么?”这是一位亚马逊探险者日记中的一段。原来,他是遭到了圭亚那吸血编福的“暗算”。作者进一步记述到:“这类蝙蝠体型相对巨大,在人或其它动物熟睡时吸血有时直到后者死亡。吸血蝙蝠具有奇特的吸血本领,它们可以本能地辨别出熟睡的人或其它动物,一边扇动翅膀一边轻轻咬破袭击目标的皮肤。因为伤口极小,所以受害者感觉不到疼痛。于是,吸血编福便从这个小口不停地吸吮直到几乎飞不动为止。”早期到亚马逊探险的旅行家很多…  相似文献   

2.
食鱼蝙蝠——大足鼠耳蝠初报   总被引:5,自引:1,他引:5       下载免费PDF全文
大足鼠耳蝠属蝙蝠科,为中国特有种类。食性分析和野外观察证实大足鼠耳蝠为食鱼蝙蝠。室内放养条件下发现大足鼠耳蝠一次进食能连续消耗5.0—10.0g麦穗鱼。本研究首次报道北京房山亦有大足鼠耳蝠分布,并介绍了其地理分布和保护现状。  相似文献   

3.
食虫蝙蝠与昆虫之间的相互作用和协同进化关系   总被引:1,自引:0,他引:1       下载免费PDF全文
食虫蝙蝠与昆虫之间是捕食和被捕食的关系,夜行性昆虫是食虫蝙蝠主要的食物来源。在漫长的协同进化中,蝙蝠施加的捕食压力导致夜行性昆虫一系列特征的进化,其中一部分昆虫进化出能听到蝙蝠的超声波信号并采取逃跑行为或者能通过其它方式躲避蝙蝠,同时昆虫的适应性特征同样影响着蝙蝠的回声定位和捕食策略。本文从蝙蝠捕食昆虫的种类、昆虫对蝙蝠捕食的反应和食虫性蝙蝠对昆虫防卫的适应对策等三个方面对食虫蝙蝠与昆虫之间的相互关系进行了概述。  相似文献   

4.
本文通过免疫组织化学与透射电子显微镜技术对食鱼蝙蝠Merkel细胞的分布及超微结构进行了详尽的研究.研究表明,Merkel细胞广泛存在于食鱼蝙蝠背部、腹部、股间膜、脚掌、翼膜皮肤的凸起、毛囊及表皮的基层.脚掌Merkel细胞的密度显著多于其他部位.这些结果意味着Merkel细胞可能与触觉有关:凸起物毛发对空气流动敏感,它可能通过感知身体周围空气的流动来调节飞行过程中的姿势.超微结构表明,与其他脊椎动物相比,食鱼蝙蝠的Merkel细胞含有较多的中间纤维及较大的内含物颗粒.  相似文献   

5.
蝙蝠的食肉性,食鱼性和食血性   总被引:2,自引:0,他引:2  
1食肉性食肉见于很多哺乳动物类群中。从概念上讲,食肉目是特化的适应这种食性的动物,它们介入食物链的各个水平;很多动物如狮子、虎和狠处于食物金字塔顶尖的位置。食肉性在天翼手目中似乎并不特别广泛。两种假吸血编蝠(Megadermalyra和Macrodermagigas)常捕食其它编蝠、小型啮齿类动物和小鸟,有时也吃蛙和晰蜴。研究发现新大陆叶口蝠科(Phyl-lostomidae)四种叶鼻蝙蝠(Phyllostomushasta-tus,VampyrumSpectrum,Trachopsclrrhosus和Ch。t0Pte。sauritus)也食肉。与假吸血幅科成员类似,这些偏福的食物由小型脊椎动物组成…  相似文献   

6.
翼手目动物(蝙蝠)的食性多样性丰富,其食物包括昆虫、鱼类、两栖动物、爬行动物、鸟类、哺乳动物、植物果实、花、花粉、花蜜、叶片和血液等。其中,大约70%的蝙蝠主要以昆虫为食,而以血液为食的吸血蝙蝠只有3种,它们是哺乳动物中唯一的仅以血液为食的动物类群。因此,吸血蝙蝠是研究动物食性演化的重要模式动物。本文综述了吸血蝙蝠在形态学、生理学、行为学、感觉系统和肠道微生物等方面的研究,指出了吸血蝙蝠食性特化的适应性特征。随着普通吸血蝠高质量基因组的公布,我们将有机会探究食性相关基因在吸血蝙蝠中的功能改变,阐明动物食性转变的分子机理。本文将为吸血蝙蝠和其它动物食性转变的研究提供有益的参考。  相似文献   

7.
咬合力与动物咀嚼系统的形态特征以及食物硬度有关,是评价动物取食行为的重要指标之一。本文于2012年4月在云南西双版纳对食果、食蜜和食虫3种食性的12种蝙蝠咬合力进行研究,使用咬合力探测仪测量蝙蝠手持状态下的咬合力,分析不同食性蝙蝠咬合力的差异,并与其体型(体重、前臂长、头长)进行相关分析。结果表明,3种食性蝙蝠的咬合力存在显著差异,食果蝙蝠咬合力最大,其次为食蜜蝙蝠,食虫蝙蝠咬合力最小;但是去除体重因素的影响之后,不同食性蝙蝠的咬合力则差异不显著。蝙蝠咬合力与体重、前臂长、头长均呈显著正相关。本文研究结果表明,体重是影响蝙蝠咬合力的主要因素,食性在一定程度上也对咬合力产生影响,食蜜蝙蝠吻部延长,头长上的特化导致其咬合力的减弱。  相似文献   

8.
鸟类的贮食行为及研究   总被引:4,自引:0,他引:4       下载免费PDF全文
本文从6个方面综述了对鸟类贮食行为的研究情况。1.鸟类贮食行为的概念。2.鸟类贮食类型。3.主要贮食鸟类类群。4.贮食鸟类的重取机制。5.鸟类贮食行为的进化。6.鸟类贮食行为的研究展望。  相似文献   

9.
为探讨旧大陆食果和食蜜蝙蝠的食性类型不同是否造成其取食器官舌长度及结构的差异,本研究以2种食果蝙蝠犬蝠(Cynopterus sphinx)和棕果蝠(Rousettus leschenaultii)以及1种食蜜蝙蝠长舌果蝠(Eonycteris spelaea)为研究对象,比较了这3个物种间舌的差异.犬蝠、棕果蝠和长舌果蝠伸入直径为2 cm试管的最大舌长度L1(包括伸入试管的吻部和吻部以外的舌长)分别为(29.19±0.52)mm、(35.05±0.82) mm、(49.34±1.64) mm;伸出吻端外部的舌长L3分别为(16.25±0.53)mm、(19.25±0.79) mm、(31.88 ± 1.56) mm;与体重转换后的最大舌长度,即转换L1分别为(8.57±0.17) mm/g1/3、(7.90 ±0.27) mm/g1/3、(12.41 ±0.40) mm/g1/3;与体重转换后的伸出吻端外部的舌长,即转换L3分别为(4.77±0.16) mm/g1/3、(4.34±0.22) mm/g1/3、(8.01 ±0.38) mm/g1/3;与体重转换后的解剖舌长分别为(5.56 ±0.16) mm/g1/3、(5.35 ±0.14) mm/g1/3、(6.65±0.38)mm/g1/3.此5个参数种间比较均差异显著,食蜜类的长舌果蝠的5个参数均显著长于食果类犬蝠和棕果蝠的相应参数.通过比较3种蝙蝠的舌结构发现,长舌果蝠的舌尖尖细且具有毛刷状丝状乳头结构,舌面及两侧凹槽较多;犬蝠和棕果蝠的舌尖钝圆,舌面乳头和凹槽较少而平缓.本文结果表明,旧大陆食蜜蝙蝠与食果蝙蝠在舌长度和舌结构上存在明显差异,可能与捕食行为的差异有关.  相似文献   

10.
为探讨旧大陆食果和食蜜蝙蝠的食性类型不同是否造成其取食器官舌长度及结构的差异,本研究以2种食果蝙蝠犬蝠(Cynopterus sphinx)和棕果蝠(Rousettus leschenaultii)以及1种食蜜蝙蝠长舌果蝠(Eonycteris spelaea)为研究对象,比较了这3个物种间舌的差异。犬蝠、棕果蝠和长舌果蝠伸入直径为2 cm试管的最大舌长度L1(包括伸入试管的吻部和吻部以外的舌长),分别为(29.19?0.52)mm、(35.05?0.82)mm、(49.34?1.64)mm;伸出吻端外部的舌长L3分别为(16.25?0.53)mm、(19.25?0.79)mm、(31.88?1.56)mm;与体重转换后的最大舌长度,即转换L1分别为(8.57?0.17)mm/3√g、(7.90?0.27)mm/3√g、(12.41?0.40)mm/3√g;与体重转换后的伸出吻端外部的舌长,即转换L3分别为(4.77?0.16)mm/3√g、(4.34?0.22)mm/3√g、(8.01?0.38)mm/3√g;与体重转换后的解剖舌长分别为(5.56?0.16)mm/3√g、(5.35?0.14)mm/3√g、(6.65?0.38)mm/3√g。此5个参数种间比较均差异显著,食蜜类的长舌果蝠的5个参数均显著长于食果类犬蝠和棕果蝠的。通过比较3种蝙蝠的舌结构发现,长舌果蝠的舌尖尖细且具有毛刷状丝状乳头结构,舌面及两侧凹槽较多;犬蝠和棕果蝠的舌尖钝圆,舌面乳头和凹槽较少而平缓。本文结果表明,旧大陆食蜜蝙蝠与食果蝙蝠在舌长度和舌结构上存在明显差异,可能与捕食行为上的差异有关。  相似文献   

11.
Variations in penile morphology among galago species are pronounced and complex. Comparative studies of galagos and other primate species show that elongation of the baculum (os penis)is associated with copulatory patterns involving a prolonged period of intromission. The enlarged penile “spines” of male galagos may be important in maintaining a genital “lock” during copulation. In primate species where females mate with a number of partners, sexual selection may have favored the rapid evolution of such features of penile morphology and masculine copulatory behavior. It is suggested that evolution of complex penile morphologies in galagos has been influenced by sexual selection and that such morphological variations are extremely useful in taxonomic studies.  相似文献   

12.
For survival, bats of the suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes to extract the direction, distance, velocity, size, and shape of the prey. Although these bats and other mammals share the common layout of the auditory pathway and sound coding mechanism, they have highly developed auditory systems to process biologically relevant pulses at the expense of a reduced visual system. During this active biosonar behavior, they progressively shorten the pulse duration, decrease the amplitude and pulse-echo gap as they search, approach and finally intercept the prey. Presumably, these changes in multiple pulse parameters throughout the entire course of hunting enable them to extract maximal information about localized prey from the returning echoes. To hunt successfully, the auditory system of these bats must be less sensitive to intense emitted pulses but highly sensitive to weak returning echoes. They also need to recognize and differentiate the echoes of their emitted pulses from echoes of pulses emitted by other conspecifics. Past studies have shown the following mechanical and neural adaptive mechanisms underlying the successful bat biosonar behavior: (1) Forward orienting and highly mobile pinnae for effective scanning, signal reception, sound pressure transformation and mobile auditory sensitivity; (2) Avoiding and detecting moving targets more successfully than stationary ones; (3) Coordinated activity of highly developed laryngeal and middle ear muscles during pulse emission and reception; (4) Mechanical and neural attenuation of intense emitted pulses to prepare for better reception of weak returning echoes; (5) Increasing pulse repetition rate to improve multiple-parametric selectivity to echoes; (6) Dynamic variation of duration selectivity and recovery cycle of auditory neurons with hunting phase for better echo analysis; (7) Maximal multiple-parametric selectivity to expected echoes returning within a time window after pulse emission; (8) Pulse-echo delaysensitive neurons in higher auditory centers for echo ranging; (9) Corticofugal modulation to improve on-going multiple-parametric signal processing and reorganize signal representation, and (10) A large area of the superior colliculus, pontine nuclei and cerebellum that is sensitive to sound for sensori-motor integration. All these adaptive mechanisms facilitate the bat to effectively extract prey features for successful hunting.  相似文献   

13.
Habitat preference and flight activity of bats in a city   总被引:3,自引:0,他引:3  
  相似文献   

14.
15.
Behavioral development of three species of marine sciaenid fish larvae was examined and related to their sensory morphology and habitat. Anti-predator behavior of the larvae was examined under different experimental conditions to isolate the roles of vision and mechanoreception. Spotted seatrout larvae maintained high levels of responsiveness even without visual cues but performed very poorly without mechanoreception. Loss of visual cues had no impact on the distance at which seatrout responded to the stimulus. Atlantic croaker generally performed best when vision was available. This species had low responsiveness without visual stimuli, and had smaller reactive distances when unable to use vision. Red drum were the most flexible in their use of sensory systems. For almost the entire larva period, responsiveness of red drum was equally high regardless of which sensory system was not available. In addition, reactive distances were unaffected when either visual or mechanoreceptive stimuli were eliminated. Thus, seatrout and croaker are sensory specialists, and red drum are sensory generalists. This is corroborated by previous studies on the sensory morphology of these species which showed that seatrout had more mechanosensory specialization, croaker had more visual specialization, and red drum were intermediate, with some enhancement of both systems. Behavioral data are interpreted in terms of habitat usage of the three species. Seatrout have the most restricted distribution over seagrass beds, croaker have a somewhat more flexible distribution, encompassing more open water habitats, and red drum have the most flexible range of habitats, using both vegetated and unvegetated portions of the estuary. These results indicate that even closely related species can exhibit different behaviors in order to better exploit the habitats in which they occur.  相似文献   

16.
Fifteen species of neotropical and three species of paleotropical bats are known either to roost in or to make tents in over 80 species of vascular plants. We summarize the current knowledge of bat-tent architecture, report two new styles of tents (conical and apical) from the Paleotropics, compare the similarity in tents constructed, or used, by neotropical and paleotropical bats, and consider possible functions of tents. Seven styles of tents are known from the Neotropics, three (conical, palmate umbrella, and apical tents) are known from both the Neo- and the Paleotropics, and one (stem tent) is unique to the Paleotropics. In the Neotropics tent-roosting and/or tent-making appears to be a behavior unique to the diverse microchiropteran family Phyllostomidae (subfamily Phyllostomatinae: tribe Stenodermatini), and in the Paleotropics two members of the megachiropteran family Pteropodidae and one member of the microchiropteran family Vespertilionidae are known to construct or roost in tents. Despite the variety of plant taxa used by bats in tent construction, there appears to be a limited number of different leaf forms that can be altered by bats and used as tents. We suggest that the similarity in tent architecture observed among the neotropical and paleotropical bats is a consequence of convergence in leaf morphology among forest understory plants. The congruence in tent-making/roosting behavior observed in members of the Stenodermatini and the Pteropodidae (genusCynopterus) suggests a phylogenetic influence on these behaviors. The similarity in tent-making and/or tent-roosting behavior and life-history traits (small, <70 g, mostly foliage-roosting frugivores) among these divergent neotropical and paleotropical taxa supports a convergence hypothesis in which members of these groups have become ecological equivalents. Although actual tent-making has been observed in only one bat species to date, we suggest that the principal selective force leading to the evolution of tent-making is a polygynous mating system whereby males construct tents to gain access to females. Tents in turn provide resources that offer protection from predators and inclement weather.  相似文献   

17.
Despite their taxonomic and ecological diversity, modern bats (Order Chiroptera) are almost exclusively nocturnal. This behaviour is too ubiquitous to be explained by common patterns of temporal variation in availability of their diverse food sources or by the risk of hyperthermia when flying during the day. Other explanations for bat nocturnality include competition and increased predation risk from birds during the day. In the early and mid Eocene, the known bat fauna consisted of several insectivorous species of sizes similar to those of the modern European assemblage. This fauna was contemporaneous with several species of predatory birds, including owls (Strigiformes), hawks (Accipitridae), falcons (Falconidae) and rollers (Coraciiformes), which were the same size as modern predators on bats. Predation risk could therefore have been a significant factor preventing the early bats from becoming diurnal. Competition from aerial insectivorous birds, however, was less likely to have been significant for bats during the early Eocene, since very few such groups, mainly small Aegialornithidae, were present, with most of the major groups of aerial insectivores evolving later.  相似文献   

18.
《Zoology (Jena, Germany)》2015,118(3):192-202
Many studies have revealed the significant influence of the social nature and ecological niche of a species on the design and complexity of their communication sounds. The knowledge of communication sounds and particularly of the flexibility in their use among mammals, however, remains patchy. Being highly vocal and social, bats are well suited for investigating vocal plasticity as well as vocal diversity. Thus, the overall aim of this study was to test the presence of structural overlap between calls used in social communication and echolocation pulses emitted during foraging in greater tube-nosed bats (Murina leucogaster). Acoustic analysis and spectrotemporal decomposition of calls revealed a rich communication repertoire comprising 12 simple syllables and 5 composites with harmonics in the ultrasonic range. Simultaneous recording of vocal and social behavior in the same species yielded a strong correspondence between distinct behaviors and specific call types in support of Morton's motivation-structure hypothesis. Spectrographic analysis of call types also revealed the presence of modified components of echolocation pulses embedded within social calls. Altogether, the data suggest that bats can parse complex sounds into structurally simpler components that are recombined within behaviorally meaningful and multifunctional contexts.  相似文献   

19.
We analyze the consequences of diet choice behavior for the evolutionary dynamics of foraging traits by means of a mathematical model. The model is characterized by the following features. Consumers feed on two different substitutable resources that are distributed in a fine-grained manner. On encounter with a resource item, consumers decide whether to attack it so as to maximize their energy intake. Simultaneously, evolutionary change occurs in morphological traits involved in the foraging process. The assumption here is that evolution is constrained by a trade-off in the consumer's ability to forage on the alternative resources. The model predicts that flexible diet choice behavior can guide the direction of evolutionary change and mediate coexistence of different consumer types. Such polymorphisms can evolve from a monomorphic population at evolutionary branching points and also at points where a small genetic change in a trait can provoke a sharp instantaneous and nongenetic change in choice behavior. In the case of weak trade-offs, the evolutionary dynamics of a dimorphic consumer population can lead to alternative evolutionarily stable communities. The robustness of these predictions is checked with individual-based simulations and by relaxing the assumption of optimally foraging consumers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号