首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human serum macrophage-stimulating protein (MSP) induces motile activity of murine resident peritoneal macrophages and is a growth and motility factor for epithelial cells. It belongs to the plasminogen-related family of kringle proteins, and is secreted as a single-chain, 78-kDa, biologically inactive pro-MSP. Proteolytic cleavage of pro-MSP at a single site yields active MSP, a disulfide-linked alphabeta-chain heterodimer. However cleavage of recombinant pro-MSP yielded not only the disulfide-linked heterodimer, but also free alpha- and beta-chains, indicating that some of the recombinant molecules lacked an alphabeta-chain disulfide. We purified the free chains for characterization. The beta-chain of MSP has three extra cysteines, Cys527, Cys562, and Cys672, which are not found in the plasminogen beta-chain. Disulfide bond analysis showed a Cys527-Cys562, but also a Cys588-Cys672. Coopting Cys588 by Cys672 prevented the expected formation of a disulfide between alpha-chain Cys468 and beta-chain Cys588. Concomitant studies determined structures of oligosaccharides at the three Asn-linked glycosylation sites of MSP. The oligosaccharides at the three Asn loci are heterogeneous; 11 different sugars were identified, all being sialylated fucosyl biantennary structures. We also located the pro-MSP signal peptide cleavage site at Gly18-Gln19 and the scissile bond for formation of mature MSP at Arg483-Val484.  相似文献   

2.
This paper presents evidence that alpha 1-antichymotrypsin in lung secretions is not effective as an inhibitor of chymotrypsin-like enzymes. First, lung secretion samples inhibited more cathepsin G on a one-to-one molar basis than could be accounted for by the alpha 1-antichymotrypsin present. Second, the major cathepsin G inhibitory capacity of sputum was in gel filtration fractions that corresponded to a low molecular weight (10,000-15,000) and contained immunoreactive antileucoprotease. Third, although alpha 1-antichymotrypsin purified from plasma was almost fully active against cathepsin G, that purified from lung lavage retained less than 15% of its inhibitory function. Immunoblotting following sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that alpha 1-antichymotrypsin in plasma and lung secretions are of similar molecular size and no enzyme-alpha 1-antichymotrypsin complexes could be detected in sputum or bronchoalveolar lavage fluids. However, in contrast to the alpha 1-antichymotrypsin purified from plasma, the lavage protein gave a broad elution profile following anion-exchange chromatography.  相似文献   

3.
A novel human tissue kallikrein inhibitor designated as kallistatin has been purified from plasma to apparent homogeneity by polyethylene glycol fractionation and successive chromatography on heparin-Agarose, DEAE-Sepharose, hydroxylapatite, and phenyl-Superose columns. A purification factor of 4350 was achieved with a yield of approximately 1.35 mg per liter of plasma. The purified inhibitor migrates as a single band with an apparent molecular mass of 58 kDa when analyzed on SDS-polyacrylamide gel electrophoresis under reducing conditions. It is an acidic protein with pI values ranging from 4.6 to 5.2. No immunological cross-reactivity was found by Western blot analyses between kallistatin and other serpins. Kallistatin inhibits human tissue kallikrein's activity toward kininogen and tripeptide substrates. The second-order reaction rate constant (ka) was determined to be 2.6 x 10(4) M-1 s-1 using Pro-Phe-Arg-MCA. The inhibition is accompanied by formation of an equimolar, heat- and SDS-stable complex between tissue kallikrein and kallistatin, and by generation of a small carboxyl-terminal fragment from the inhibitor due to cleavage at the reactive site by tissue kallikrein. Heparin blocks kallistatin's complex formation with tissue kallikrein and abolishes its inhibitory effect on tissue kallikrein's activity. The amino-terminal residue of kallistatin is blocked. Sequence analysis of the carboxyl-terminal fragment generated from kallistatin reveals the reactive center sequence from P1' to P15', which shares sequence similarity with, but is different from known serpins including protein C inhibitor, alpha 1-antitrypsin, and alpha 1-antichymotrypsin. The results show that kallistatin is a new member of the serpin superfamily that inhibits human tissue kallikrein.  相似文献   

4.
Incubation of C1 esterase inhibitor with Crotalid, Viperid and Colubrid snake venoms resulted in enzymatic inactivation of the inhibitor. Intact inhibitor (104 kDa) was converted into an active intermediate species of 89 kDa and then a further cleavage resulted in formation of an 86-kDa inactive inhibitor. In contrast, C1 esterase inhibitor did not lose activity during incubation with Elapid venoms; however, the intact inhibitor was gradually converted to an active species of 89 kDa during the incubation. Human alpha 1-antichymotrypsin was inactivated by all venoms tested, including those from the Elapid family. The 67-kDa intact inhibitor was converted by the venom proteinases to an inactive 63-kDa form. The results suggest that this acute-phase plasma protein is readily susceptible to inactivation by venom proteinases. Human alpha 2-antiplasmin (68 kDa) was cleaved to form a 61-kDa active intermediate, which then underwent a second cleavage to produce an inactive 53-kDa product. Elapid venoms had no effect on alpha 2-antiplasmin activity and did not cleave this inhibitor. All inhibitors were inactivated with catalytic amounts of venom proteinases. No stable proteinase-proteinase inhibitor complexes were detected, and no random proteolysis of the inhibitors occurred.  相似文献   

5.
Prostate-specific antigen (PSA) is one of the three most abundant prostatic-secreted proteins in human semen. It is a serine proteinase that, in its primary structure, manifests extensive similarities with that of the Arg-restricted glandular kallikrein-like proteinases. When isolated from semen by the addition of chromatography on aprotinin-Sepharose to a previously described procedure, PSA displayed chymotrypsin-like activity and cleaved semenogelin and the semenogelin-related proteins in a rapid and characteristic pattern, but had no trypsin-like activity. About one third of the purified protein was found to be enzymatically inactive, due to cleavage carboxy-terminal of Lys145. Active PSA formed SDS-stable complexes with alpha 1-antichymotrypsin, alpha 2-macroglobulin-analogue pregnancy zone protein. PSA formed inhibitory complexes with alpha 1-antichymotrypsin at a molar ratio of 1:1, a reaction in which PSA cleaved the inhibitor in a position identical to that reported from the reaction between chymotrypsin and alpha 1-antichymotrypsin. The formation of stable complexes between PSA and alpha 1-antichymotrypsin occurred at a much slower rate than that between chymotrypsin and alpha 1-antichymotrypsin, and at a similar or slightly slower rate than that between PSA and alpha 2-macroglobulin. When added to normal blood plasma in vitro, active PSA formed stable complexes both with alpha 2-macroglobulin and alpha 1-antichymotrypsin. This complex formation may be a crucial determinant of the turnover of active PSA in intercellular fluid or blood plasma in vivo.  相似文献   

6.
Macrophage-stimulating protein (MSP) is a plasminogen-related growth factor and ligand for the receptor tyrosine kinase RON. The MSP/RON system promotes wound healing and invasive tumor growth and suppresses proinflammatory immune response. MSP binding to RON requires proteolytic conversion of the inactive single-chain form (pro-MSP) into the disulfide-linked α/β heterodimer. The pro-MSP cleavage sequence (Ser-Lys-Leu-Arg(483)↓Val(484)) closely matches the substrate recognition sequences of hepsin, a type II transmembrane serine protease, that is overexpressed in several cancers. Here, we show that recombinant hepsin cleaves pro-MSP at the consensus site Arg(483)-Val(484) with superior efficiency compared with the known activators MT-SP1 and hepatocyte growth factor activator (HGFA). At least 50% of pro-MSP was processed within 1 hour at a hepsin concentration of 2.4 nmol/L and at a molar enzyme to substrate ratio of 1:500. An uncleavable single-chain variant of MSP weakly bound to a RON-Fc fusion protein, whereas hepsin-cleaved MSP bound with a K(D) of 10.3 nmol/L, suggesting that the high-affinity binding site in MSP β-chain was properly formed. LNCaP prostate cancer cells overexpressing hepsin on the cell surface efficiently activated pro-MSP, which was blocked by a specific anti-hepsin antibody. Incubation of pro-MSP with hepsin led to robust RON-mediated phosphorylation of mitogen-activated protein kinase, ribosomal S6 protein, and Akt in human A2780 ovarian carcinoma cells stably expressing RON protein. In macrophages, pro-MSP with hepsin induced chemotaxis and attenuated lipopolysaccharide-dependent production of nitric oxide. These findings suggest that the MSP/RON signaling pathway may be regulated by hepsin in tissue homeostasis and in disease pathologies, such as in cancer and immune disorders.  相似文献   

7.
The synthesis of an active proteinase inhibitor, gp 66, by human breast epithelial cells is reported. This glycoprotein is identical to serum alpha 1-antichymotrypsin, which inhibits proteinases that cleave at hydrophobic residues. Immunohistological studies show the in vivo expression on normal secretory and ductal epithelial cells and on primary and metastatic adenocarcinomas. Immunoaffinity-purified gp 66 from MCF-7 culture supernatants is an active inhibitor of chymotrypsin as determined in a fluorogenic enzyme assay and can form stable 88 kDa enzyme-inhibitor complexes. The synthesis of a functional inhibitor may represent the epithelial cell's attempt to stabilize its extracellular milieu.  相似文献   

8.
Fresh plasma was seeded with trace amounts of highly purified biologically intact iodine-labelled plasminogen and the plasmin-inhibitor complexes formed after activation with streptokinase or urokinase separated by gel filtration. Two radioactive peaks were observed, the first one eluted in the void volume and the second one just before the 7-S globulin peak. In incompletely activated samples, the second peak was always predominant over the first one. Both components were purified with high yield by a combination of affinity chromatography on lysine-agarose and gel filtration, and investigated by dodecylsulphate-polyacrylamide gel electrophoresis and immunoelectrophoresis. Neither component reacted with antisera against alpha1-antitrypsin, antithrombin III, C1-esterase inhibitor, inter-alpha-trypsin inhibitor or alpha1-antichymotrypsin. The component of the first peak appeared to be a complex between plasmin and alpha2-macroglobulin which reacted with antisera against human plasminogen and against alpha2-macroglobulin. The component of the second peak had a molecular weight (Mr) of 120000-140000 by dodecyl-sulphate-polyacrylamide gel electrophoresis and lpon reduction displayed a doublet band with an Mr of 65000-70000 and a band with Mr 11000. It reacted with antisera against plasminogen and with antisera raised against this complex and absorbed with purified plasminogen. The latter antisera reacted with a single component in plasma which is different from the above-mentioned plasma protease inhibitors. Specific removal of this component from plasma by immuno-absorption resulted in disappearance of the fast-reacting antiplasmin activity whereas alpha2-macroglobulin was found to represent the slower-reacting plasmin-neutralizing activity. In the presence of normal plasma levels of these proteins, the specific removal or absence of alpha1-antitrypsin, antithrombin III or C1-esterase inhibitor did not alter the inactivation rate of plasmin when added to plasma in quimolar amounts to that of plasminogen. It is concluded that only two plasma proteins are important in the binding of plasmin generated by activation of the plasma plasminogen, namely a fast-reacting inhibitor which is different from the known plasma protease inhibitors and which we have provisionally named antiplasmin, and alpha2-macroglobulin, which reacts more slowly.  相似文献   

9.
A procedure is presented for purifying a novel proteinase inhibitor in human plasma whose apparent unique biological property is to inhibit efficiently the lysis of fibrin clots induced by plasminogen activator. The final product is homogeneous as judged by disc gel electrophoresis, and immunoelectrophoresis. Its molecular weight estimated by sodium dodecyl sulfate gel electrophoresis or sedimentation equilibrium is 67,000 and 63,000, respectively. The inhibitor is a glycoprotein consisting polypeptide chain containing 11.7% carbohyrate. It migrates in the alpha2-globulin region in immunoelectrophoresis. The inhibitor is chemically and immunologically different from all the other known inhibitors in plasma. Inhibition of plasmin by the inhibitor is almost instantaneous even at 0 degrees, in contrast to the slow inhibition of urokinase (plasminogen activator in urine). Plasminogen activation by urokinase-induced clot lysis is inhibited by the inhibitor mainly through a mechanism of instantaneous inhibition of plasmin formed and not through the inhibition of urokinase. The inhibitor also inhibits trypsin. Consequently, it is suggested that this newly identified inhibitor is named alpha2-plasmin inhibitor or alpha2-proteinase inhibitor. A specific antibody directed against the inhibitor neutralizes virtually all inhibitory activity of plasma to activator-induced clot lysis. Immunochemical quantitation of the inhibitor was specific antiserum to the inhibitor and the purified inhibitor as a standard indicates that the concentration of the inhibitory in the serum of a healthy man is in or near the range of 5 to 7 mg/100 ml, which is the lowest concentration among the concentration of the proteinase inhibitors in plasma. The inhibitor and plasmin, trypsin, or urokinase form a complex which cannot be dissociated with denaturing and reducing agents. The formation of the enzyme-inhibitor complex occurs on a 1:1 molar basis and is associated with the cleavage of a unique peptide bone, which is most clearly demonstrated in the interaction of the inhibitor and beta-trypsin. In the complex formation between the inhibitor and plasmin, the inhibitor is cross-linked with the light chain which contains the active site of plasmin. It is suggested that, in a fashion analogous to complex formation between alpha1-antitrypsin and trypsin, the cross-links are formed between the active site serine of the enzyme and the newly formed COOH-terminal residue of the inhibitor, with cleavage of a peptide bond.  相似文献   

10.
Incubation of human plasma alpha 1-antichymotrypsin with proteinases from various microbial sources resulted in the enzymatic inactivation of the inhibitor as determined by loss of inhibitory activity against alpha-chymotrypsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the reaction products indicated that intact alpha 1-antichymotrypsin (Mr 67000) had been converted to an inactive form (63000) by limited proteolysis. No stable proteinase/inhibitor complexes were detected, and no random proteolysis of the inactivated inhibitor occurred even after prolonged incubation with the proteinases. Metallo- and serine proteinases from several microbial sources all readily inactivated alpha 1-antichymotrypsin. Since alpha 1-antichymotrypsin is also an early stage acute phase reactant, its inactivation may be important in disrupting bodily defense mechanisms.  相似文献   

11.
A plasma inhibitor of tonin activity in the rat, was purified by ammonium sulfate precipitation, ion-exchange of chromatography, and gel filtration. Its purity was investigated by analytical electrophoresis on polyacrylamide gel and by ultracentrifugation sedimentation velocity. The molecular weight (360 000) of the purified inhibitor was determined by sodium dodecyl sulfate electrophoresis and its isoelectric point (4.5) by gel isoelectrofocusing. The Stokes radius (640 nm) was evaluated by gel filtration studies and a frictional ratio (f/fo) of 1.95 was calculated from the molecular weight and Stokes radius. Kinetic studies using angiotensin I as substrate showed that the inhibition of tonin by the purified inhibitor was noncompetitive and does not exceed 70%. Electrophoresis showed the same mobility for [125I]tonin bound to plasma proteins and for [125I]tonin bound to the purified inhibitor. The inhibitor may be a protein resembling half of the dimeric protease inhibitor rat alpha 1-macroglobulin or human alpha 2-macroglobulin.  相似文献   

12.
Y Cui  F Jean  G Thomas    J L Christian 《The EMBO journal》1998,17(16):4735-4743
Bone morphogenetic protein-4 (BMP-4) is a multifunctional developmental regulator. BMP-4 is synthesized as an inactive precursor that is proteolytically activated by cleavage following the amino acid motif -Arg-Ser-Lys-Arg-. Very little is known about processing and secretion of BMPs. The proprotein convertases (PCs) are a family of seven structurally related serine endoproteases, at least one of which, furin, cleaves after the amino acid motif -Arg-X-Arg/Lys-Arg-. To examine potential roles of PCs during embryonic development we have misexpressed a potent protein inhibitor of furin, alpha1-antitrypsin Portland (alpha1-PDX) in early Xenopus embryos. Ectopic expression of alpha1-PDX phenocopies the effect of blocking endogenous BMP activity, leading to dorsalization of mesoderm and direct neural induction. alpha1-PDX-mediated neural induction can be reversed by co-expression of downstream components of the BMP-4 signaling pathway. Thus, alpha1-PDX can block BMP activity upstream of receptor binding, suggesting that it inhibits an endogenous BMP-4 convertase(s). Consistent with this hypothesis, alpha1-PDX prevents cleavage of BMP-4 in an oocyte translation assay. Using an in vitro digestion assay, we demonstrate that four members of the PC family have the ability to cleave BMP-4, but of these, only furin and PC6B are sensitive to alpha1-PDX. These studies provide the first in vivo evidence that furin and/or PC6 proteolytically activate BMP-4 during vertebrate embryogenesis.  相似文献   

13.
We have identified a new factor, CFX, in human serum and plasma that inhibits the growth of cultured human and mouse cell lines. CFX was determined to be a negatively charged, hydrophobic glycoprotein, with a native molecular weight of 110–120 kDa and a minimal active subunit of 55 kDa. It is precipitated by 60% ammonium sulfate and is resistant to heat treatment at 100°C for 30 min. CFX was purified from human plasma to a single band on a gel which retained the cell growth inhibitory activity. Amino acid sequence analysis of the CFX band revealed sequences from four human glycoproteins, α1-antichymotrypsin, C1-esterase inhibitor, α1-antitrypsin, and α2-antiplasmin, all members of the superfamily of serpins. Of the four, C1-esterase inhibitor was shown to be the most potent cell growth inhibitor. These results suggest that serpins may play a cell growth inhibitory role in vivo, in addition to their role as protease inhibitors.  相似文献   

14.
The tumor necrosis factor alpha converting enzyme (TACE) activity is required for the shedding of a variety of biologically active membrane bound precursors. The activation of TACE necessitates the proteolytic cleavage of its prodomain, a process that was suggested to be catalyzed by the proprotein convertase furin. However, the involvement of furin in this activation process has never been experimentally demonstrated. We have shown that the furinlike cleavage site (R-V-K-R(214)) localized between the prodomain and the metalloprotease domain of TACE is the sole site that can be in vitro cleaved by furin. In Cos7 cells, the release of TACE-processed substrates was reduced by the overexpression of the furin-specific proprotein convertase inhibitor Portland alpha1-antitrypsin inhibitor, but the release of TACE-processed substrates was increased by overexpression of furin in LoVo cells (deficient in furin activity) in which a mature form of TACE was identified. The immature form of TACE was detected at the surface of LoVo cells and at the surface of Cos7 and HT29 cells upon proprotein convertase inhibition. These results suggest that furin is the major proprotein convertase involved in the maturation/activation of TACE which is not a prerequisite for its cell-surface expression.  相似文献   

15.
A high molecular weight protease inhibitor has been purified from the cell-free plasma of the horseshoe crab Limulus polyphemus using high speed centrifugation, polyethylene glycol precipitation, and gel filtration. The inhibitor is sensitive to mild acidification, methylamine treatment, and inhibits the proteolytic activity of a variety of endopeptidases. The molecule does not inhibit trypsin-mediated hydrolysis of low molecular weight substrates and protects the active site of trypsin from inactivation by soybean trypsin inhibitor. These properties are diagnostic of the alpha 2-macroglobulin (alpha 2M) class of protease inhibitors found in vertebrates. Like vertebrate alpha 2M the Limulus alpha 2M molecule is composed of subunits of molecular weight 180,000-185,000 as determined by polyacrylamide gel electrophoresis under reducing conditions. The apparent native molecular weight for the Limulus molecule as determined by both gel filtration and gel electrophoresis under nonreducing conditions is 500,000-550,000, compared to a native molecular weight of 700,000-750,000 for human alpha 2M, determined in parallel under identical conditions. These results suggest that alpha 2M appeared in evolution at least 550 million years ago before the divergence of the lineages that gave rise to present-day arthropods and mammals.  相似文献   

16.
The synthesis of an active proteinase inhibitor, gp 66, by human breast epithelial cells is reported. This glycoprotein is identical to serum α1-antichymotrypsin, which inhibits proteinases that cleave at hydrophobic residues. Immunohistological studies show the in vivo expression on normal secretory and ductal epithelial cells and on primary and metastatic adenocarcinomas. Immunoaffinity-purified gp 66 from MCF-7 culture supernatants is an active inhibitor of chymotrypsin as determined in a fluorogenic enzyme assay and can form stable 88 kDa enzyme-inhibitor complexes. The synthesis of a functional inhibitor may represent the epithelial cell's attempt to stabilize its extracellular milieu.  相似文献   

17.
A proteinase (EC 3.4.-.-) active at physiological pH has been isolated from human skin utilizing gel filtration and affinity chromatography techniques. The proteinase has a molecular weight of approx. 28 000 and it is inhibited by alpha 2-macroglobulin, alpha 1-antitrypsin, C-1 inactivatory, soybean trypsin inhibitor and diisopropyl fluorophosphate. 2njection of 1 ng of purified proteinase into rabbit skin induces polymorphonuclear leukocyte infiltration of the cutis. Inhibition of enzyme activity with diisopropyl fluorophosphate inhibits the chemotactic effect. Addition of 0.2 microgram/ml of purified proteinase to fibroblast cultures kills the cells within minutes. This proteinase may play a significant role in modulating the inflammatory response after cellular injury.  相似文献   

18.
Human plasma serine proteinase inhibitors (serpins) gradually lost activity when incubated with catalytic amounts of snake venom or bacterial metalloproteinases. Electrophoretic analyses indicated that antithrombin III, C1-inhibitor, and alpha 2-antiplasmin had been converted by limited proteolysis into modified species which retained inhibitory activity. Further proteolytic attack resulted in the formation of inactivated inhibitors; alpha 1-proteinase inhibitor (alpha 1-antitrypsin) and alpha 1-antichymotrypsin were also enzymatically inactivated, but active intermediates were not detected. Sequence analyses indicated that the initial, noninactivating cleavage occurred in the amino-terminal region of the inhibitors. Inactivation resulted in all cases from the limited proteolysis of a single bond near, but not at, the reactive site bond in the carboxy-terminal region of the inhibitors. The results indicate that the serpins have two regions which are susceptible to limited proteolysis--one near the amino-terminal end and another in the exposed reactive site loop of the inhibitor.  相似文献   

19.
Purification of alpha 2-plasmin inhibitor (alpha 2PI) from human plasma by affinity chromatography on plasminogen-Sepharose resulted in copurification of a contaminating protein with Mr 17,000 as judged by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. This contaminating protein could not be removed from the purified alpha 2-PI preparation by several types of gel chromatography applied. The use of the kringle 1-3 part of plasminogen, K(1 + 2 + 3), bound to Sepharose for affinity chromatography, instead of plasminogen-Sepharose, resulted in an alpha 2PI preparation without this contaminant. The contaminating protein was found to interact specifically with the kringle 4 part of plasminogen (K4) and not with K(1 + 2 + 3) or miniplasminogen. The K4-binding protein was purified by ammonium sulphate precipitation, affinity chromatography on K4-Sepharose, ion-exchange chromatography and gel filtration on AcA 34. The relative molecular mass of the protein (Mr 68 000) was estimated by gel filtration. This suggests a tetrameric protein composed of four subunits (Mr 17,000), that are dissociated by 1% sodium dodecyl sulphate. Dissociation into subunits was also demonstrated by gel filtration in the presence of 6 M guanidine hydrochloride. A specific antibody was raised in rabbits against the purified protein and this antibody was shown not to react with any known fibrinolytic components. The pI of the K4-binding protein was found to be 5.8. The first three N-terminal amino acids were determined to be Glu-Pro-Pro. The concentration of the protein in plasma was estimated to be 0.20 +/- 0.03 microM (15 +/- 2 mg/l). The electrophoretic mobility of the K4-binding protein was shown by crossed immunoelectrophoresis to be influenced by the presence of Ca2+, EDTA and heparin. The protein was found to enhance plasminogen activation catalyzed by tissue-type plasminogen activator (t-PA) in the presence of poly(D-lysine). The protein appeared to be a novel plasma protein tentatively called 'tetranectin'.  相似文献   

20.
Tagen MB  Beinfeld MC 《Peptides》2005,26(12):2530-2535
Purified recombinant prohormone convertase 1 and 2 (PC1 and PC2) cleave a peptide containing cholecystokinin (CCK) 8 Gly Arg Arg and the carboxyl-terminal peptide liberating CCK 8 Gly Arg Arg. PC1 and PC2 also cleave purified pro CCK, liberating the amino terminal pro-peptide while no carboxyl-terminal cleavage was detected. Under the conditions of the in vitro cleavage assay, it appears that the carboxyl-terminal cleavage site of pro CCK is not accessible to the enzymes while this site is readily cleaved in a synthetic peptide. Additional cellular proteins that unfold the prohormone may be required to expose the carboxyl-terminal site for cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号