首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of the mitogenic lectin concanavalin A to rat spleen cells results in a small increase in the steady-state Ca2+ content of the cells. 45Ca2+ fluxes were measured under conditions where artifacts due to Ca2+ binding to concanavalin A could be excluded. Both 45Ca2+ influx into and efflux from these cells are significantly activated by the lectin. If 45Ca2+ is added 30 min after concanavalin A the rate of influx is further enhanced. The increase in 45Ca2+ influx correlates well with binding of concanavalin A to the cells. At low concentrations (optimal mitogenic) of the lectin (1 and 3 μg/ml) no significant increase in 45Ca2+ influx occurs but an increase in 45Ca2+ efflux is still observed. The results suggest that concanavalin A binding to the cell surface causes an increase in Ca2+ influx into the cells and that activation of Ca2+ efflux occurs as a response to an increase in the cytosolic Ca2+ activity. Thus, Ca2+ may well play a role in triggering lymphocyte activation.  相似文献   

2.
Concanavalin A binding and Ca2+ fluxes in rat spleen cells   总被引:3,自引:0,他引:3  
Addition of the mitogenic lectin concanavalin A to rat spleen cells results in a small increase in the steady-state Ca2+ content of the cells. 45Ca2+ fluxes were measured under conditions where artifacts due to Ca2+ binding to concanavalin A could be excluded. Both 45Ca2+ influx into and efflux from these cells are significantly activated by the lectin. If 45Ca2+ is added 30 min after concanavalin A the rate of influx is further enhanced. The increase in 45Ca2+ influx correlates well with binding of concanavalin A to the cells. At low concentrations (optimal mitogenic) of the lectin (1 and 3 micrograms/ml) no significant increase in 45Ca2+ influx occurs but an increase in 45Ca2+ efflux is still observed. The results suggest that concanavalin A binding to the cell surface causes an increase in Ca2+ influx into the cells and that activation of Ca2+ efflux occurs as a response to an increase in the cytosolic Ca2+ activity. Thus, Ca2+ may well play a role in triggering lymphocyte activation.  相似文献   

3.
Summary Commercially available concanavalin A binds Ca2+ with high apparent affinity. In order to dissociate concanavalin A stimulated Ca2+ uptake (defined as an increased association of 45Ca2+ with cells) in rat splenocytes and Ca2+ binding to cell-bound concanavalin A, conditions were developed to remove more than 75% of the bound concanavalin A. Under these conditions concanavalin A treated cells showed a considerable increase in 45Ca2+ uptake over control. The concanavalin A stimulated uptake of 45Ca2+ occurred within minutes, and required concentrations of concanavalin A which promoted [3H]thymidine uptake into these cells. Succinyl concanavalin A was less potent in promoting Ca2+ uptake than concanavalin A. Sodium periodate inhibited Ca2+ uptake at concentrations which promoted 3H-thymidine incorporation into splenocytes.It is concluded that con canavalin A promotes Ca2+ uptake which is not due to binding of 45Ca2+ to concanavalin A. Although the concanavalin A-promoted Ca2+ uptake occurs at lectin concentrations that cause lymphocyte proliferation as measured by 3H-thymidine incorporation, the role of Ca2+ in this event remains unclear.  相似文献   

4.
(Na++K+)-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na+/Ca2+-exchanger (NCX) plays a critical role in increasing intracellular Ca2+ concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on 45Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced 45Ca influx, suggesting that the Ca2+ influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca2+ channel (LTCC) inhibitor, completely blocks the activation of NKA-induced 45Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca2+. In contrast, the inhibition of NKA by ouabain induces 4.7-fold 45Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced 45Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca2+ and that the NCX reverse-mode is the major source for the 45Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca2+ increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca2+ influx path ways in cardiomyocytes.  相似文献   

5.
Effects of N-formyl chemotactic peptides on the Ca2+ influx and efflux were investigated in guinea-pig peritoneal macrophages using an isotope tracer. fMet-Leu-Phe did not enhance the influx of 45Ca2+ into macrophages, whereas it stimulated the efflux of 45Ca2+ from macrophages at concentrations ranging from 10−10 M to 10−7 M. fMet-Met-Met and fMet-Leu also stimulated the 45Ca2+ efflux, albeit at much higher concentrations, while there was no stimulation with fMet. The mitochondrial inhibitors, oligomycin and NaN3, did not modify the 45Ca2+ efflux induced by the chemoattractants, yet they did induce the release of 45Ca2+ from the mitochondria. On the other hand, higher concentrations of the calmodulin antagonists, chlorpromazine and trifluoperazine, induced the release of 45Ca2+ from the NaN3-insensitive Ca2+ store site and mimicked the enhancement of the 45Ca2+ efflux by N-formyl chemotactic peptides. Thus, N-formyl chemotactic peptides appear to increase the levels of intracellular free Ca2+ in guinea-pig peritoneal macrophages, probably by inducing the release of Ca2+ from the NaN3-insensitive Ca2+ store site.  相似文献   

6.
An N-acetylgalactosamine (GalNAc)-specific Ca2+-dependent lectin (C-type lectin), isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), CEL-I, showed potent mitogenic activity toward normal mouse spleen cells. The mitogenic activity of CEL-I, which reached a maximum at 100 μg/ml, was inhibited by GalNAc in a concentration-dependent manner. The mitogenic effect of CEL-I at 10 μg/ml on T cell- enriched splenocytes was at a similar level due to a well-known T cell mitogen, concanavalin A (Con A), at 10 μg/ml. Furthermore, CEL-I evoked a mitogenic response from nude mouse spleen cells, while no significant effects of Con A on this cell population were observed over a wide range of concentrations. These results suggest that CEL-I is a potent mitogenic lectin with the ability to stimulate both T and B cells.  相似文献   

7.
Stimulation of human platelets with concanavalin A resulted in a significant increase in the concentration of cytoplasmic free Ca2+. This effect was due to two different processes: Ca2+ mobilization from internal stores and Ca2+ influx from the extracellular medium. Kinetic analysis revealed that the release of Ca2+ from internal storage sites occurred sooner than the opening of plasma membrane Ca2+ channels. The ability of concanavalin A to induce a sustained increase in cytoplasmic Ca2+ concentration was antagonized and reversed by methyl ∝-D -mannopyranoside, demonstrating that it was promoted by the interaction of the lectin with cell surface glycoproteins. Succinyl–concanavalin A, a dimeric derivative of the lectin, that does not promote patching/capping of the receptor, was able to bind to the platelet surface, and antagonized the effects of native concanavalin A. In addition, succinyl–concanavalin A, per se, was unable to induce Ca2+ mobilization in human platelets. Therefore, the action of the native concanavalin A was mediated by receptor clustering events. Concanavalin A mobilized Ca2+ from the same internal stores from which Ca2+ was mobilized in response to strong platelet agonists, such as thrombin and arachidonic acid. However, while thrombin was ineffective in inducing Ca2+ release after stimulation of platelets with Con A, Con A was able to cause a full discharge of Ca2+ from internal stores even in platelets previously stimulated with thrombin. These results demonstrate for the first time that the clustering of specific membrane glycoproteins can trigger platelet activation. The physiological implications during platelet aggregation are discussed.  相似文献   

8.
The short-term effects of high concentrations of Methylprednisolone (MP) on the energy metabolism of quiescent and Concanavalin A-stimulated rat thymocytes were investigated in vitro. Concanavalin A (ConA) stimulated the respiration rate of quiescent thymocytes by 35%. Addition of more than 0.15 mg MP/107 cells to ConA-stimulated cells reversed this respiratory stimulation; in addition, higher concentrations of MP caused a similar progressive decrease in the rate of respiration of both quiescent and ConA-stimulated cells. Similarly, the stimulation of respiration by ConA was greatly reduced in MP-treated cells. MP addition lowered cytoplasmic [Ca2+] and, at high concentrations, abolished the ability of ConA to increase [Ca2+]. Thus MP both reverses and prevents the immediate stimulation of thymocytes by ConA.In quiescent thymocytes, MP strongly inhibited that part of the oxygen consumption used to drive the cycle of Na+ influx across the plasma membrane and Na+ efflux on the Na+K+-ATPase, but did not inhibit oxygen consumption used to drive protein synthesis. In ConA-stimulated thymocytes MP had the same effects and also strongly inhibited oxygen consumption dependent on the cycle of Ca2+ influx across the plasma membrane and Ca2+ efflux on the Ca2+-ATPase, but had little effect on oxygen consumption used to drive RNA and DNA synthesis.These results show that MP prevents cation cycling in thymocytes (either by preventing cation influx or by inhibiting cation pumps) and prevents mitogenic stimulation of the cells. The high MP concentration required and the speed of onset of the effect (lless than 30s) provide strong evidence that these effects of MP are not mediated by glucocorticoid receptors and subsequent activation of gene expression. They may be caused by direct effects of MP on the properties of the plasma membrane. These effects are considered to be, at least partially, responsible for the beneficial results that currently have been obtained using MP megadoses in various clinical situations.  相似文献   

9.
The basal 45Ca2+ influx in human red blood cells (RBC) into intact RBC was measured. 45Ca2+ was equilibrated with cells with t1/2=15-20 s and the influx reached the steady state value in about 90-100 s and the steady state level was 1.5±0.2 μmol/lpacked cells (n=6) at 37 °C. The average value of the Ca2+ influx rate was 43.2±8.9 μmol/lpacked cells hour. The rate of the basal influx was pH-dependent with a pH optimum at pH 7.0 and on the temperature with the temperature optimum at 25 °C. The basal Ca2+ influx was saturable with Ca2+ up to 5 mmol/l but at higher extracellular Ca2+ concentrations caused further increase of basal Ca2+ influx. The 45Ca2+ influx was stimulated by addition of submicromolar concentrations of phorbol esters (phorbol 12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and forskolin. Uncoupler (3,3′,4′,5-tetrachloro-salicylanilide (TCS) 10−6-10−5 mol/l) inhibited in part the Ca2+ influx. The results show that the basal Ca2+ influx is mediated by a carrier and is under control of intracellular regulatory circuits. The effect of uncoupler shows that the Ca2+ influx is in part driven by the proton-motive force and indicates that the influx and efflux of Ca2+ are coupled via the RBC H+ homeostasis.  相似文献   

10.
Oxygen free radicals and calcium homeostasis in the heart   总被引:10,自引:0,他引:10  
Many experiments have been done to clarify the effects of oxygen free radicals on Ca2+ homeostasis in the hearts. A burst of oxygen free radicals occurs immediately after reperfusion, but we have to be reminded that the exact levels of oxygen free radicals in the hearts are yet unknown in both physiological and pathophysiological conditions. Therefore, we should give careful consideration to this point when we perform the experiments and analyze the results. It is, however, evident that Ca2+ overload occurs when the hearts are exposed to an excess amount of oxygen free radicals. Though ATP-independent Ca2+ binding is increased, Ca2+ influx through Ca2+ channel does not increase in the presence of oxygen free radicals. Another possible pathway through which Ca2+ can enter the myocytes is Na+?Ca2+ exchanger. Although, the activities of Na+?K+ ATPase and Na+?H+ exchange are inhibited by oxygen free radicals, it is not known whether intracellular Na+ level increases under oxidative stress or not. The question has to be solved for the understanding of the importance of Na+?Ca2+ exchange in Ca2+ influx process from extracellular space. Another question is ‘which way does Na+?Ca2+ exchange work under oxidative stress? Net influx or efflux of Ca2+?’ Membrane permeability for Ca2+ may be maintained in a relatively early phase of free radical injury. Since sarcolemmal Ca2+-pump ATPase activity is depressed by oxygen free radicals, Ca2+ extrusion from cytosol to extracellular space is considered to be reduced. It has also been shown that oxygen free radicals promote Ca2+ release from sarcoplasmic reticulum and inhibit Ca2+ sequestration to sarcoplasmic reticulum. Thus, these changes in Ca2+ handling systems could cause the Ca2+ overload due to oxygen free radicals.  相似文献   

11.
The characteristics of Ca2+ transport across the excitable membrane of Paramecium aurelia were studied by measuring 45Ca2+ influx and efflux. The intracellular concentration of free Ca2+ in resting P. aurelia was at least ten times less than the extracellular concentration. Ca2+ influx was easily measurable at 0°C, but not at 23°C. The influx of 45Ca2+ was stimulated by the same conditions which cause membrane depolarization and ciliary reversal. Addition of Na+ and K+ (which stimulate ciliary reversal) resulted in a 10-fold increase in the rate of Ca2+ influx. An externally applied, pulsed, electric field (1–2 mA/cm2 of electrode surface), caused the rate of Ca2+ influx to increase 3–5 times, with the extent of stimulation dependent on the current density and the pulse width Ca2+ influx had the characteristics of a passive transport system and was associated with the chemically or electrically triggered Ca2+ “gating” mechanism, which has been studied electrophysiologically. In contrast, Ca2+ efflux appeared to be catalyzed by an active transport system. With cells previously loaded at 0°C with 45Ca2+, Ca2+ efflux was rapid at 23°C, but did not occur at 0°C. This active Ca2+ efflux mechanism is probably responsible for maintaining the low internal Ca2+ levels in unstimulated cells.  相似文献   

12.
Ca2+ transport by sarcoplasmic reticulum vesicles was examined by incubating sarcoplasmic reticulum vesicles (0.15 mg/ml) at 37°C in, either normal medium that contained 0.15 M sucrose, 0.1 M KCl, 60 μM CaCl2, 2.5 mM ATP and 30 mM Tes at pH 6.8, or a modified medium for elimination of ADP formed from ATP hydrolysis by including, in addition, 3.6 mM phosphocreatine and 33 U/ml of creatine phosphokinase. In normal medium, Ca2+ uptake of sarcoplasmic reticulum vesicles reached a plateau of about 100 nmol/mg. In modified medium, after this phase of Ca2+ uptake, a second phase of Ca2+ accumulation was initiated and reached a plateau of about 300 nmol/mg. The second phase of Ca2+ accumulation was accompanied by phosphate uptake and could be inhibited by ADP. Since, under these experimental conditions, there was no significant difference of the rates of ATP hydrolysis in normal medium and modified medium, extra Ca2+ uptake in modified medium but not in normal medium could not be explained by different phosphate accumulation in the two media. Unidirectional Ca2+ influx of sarcoplasmic reticulum near steady state of Ca2+ uptake was measured by pulse labeling with 45Ca2+. The Ca2+ efflux rate was then determined by subtracting the net uptake from the influx rate. At the first plateau of Ca2+ uptake in normal medium, Ca2+ influx was balanced by Ca2+ efflux with an exchange rate of 240 nmol/mg per min. This exchange rate was maintained relatively constant at the plateau phase. In modified medium, the Ca2+ exchange rate at the first plateau of Ca2+ uptake was about half of that in normal medium. When the second phase of Ca2+ uptake was initiated, both the influx and efflux rates started to increase and reached a similar exchange rate as observed in normal medium. Also, during the second phase of Ca2+ uptake, the difference between the influx and efflux rates continued to increase until the second plateau phase was approached. In conditions where the formation of ADP and inorganic phosphate was minimized by using a low concentration of sarcoplasmic (7.5 μg/ml) and/or using acetyl phosphate instead of ATP, the second phase of Ca2+ uptake was also observed. These data suggest that the Ca2+ load attained by sarcoplasmic reticulum vesicles during active transport is modulated by ADP accumulated from ATP hydrolysis. ADP probably exerts its effect by facilitating Ca2+ efflux, which subsequently stimulates Ca2+ exchange.  相似文献   

13.
Metal ion activation of saccharide binding has been studied for concana-valin A near pH 7.0. Although two metal ions, a transition metal ion and a Ca2+ ion, can bind, both are not required. Ca2+ alone, Mn2+ alone, or Ca2+ with other transition metal ions can activate this lectin. Only one Ca2+ ion per subunit or only one Mn2+ per subunit is sufficient. Metal ion binding was studied by magnetic resonance techniques and direct binding assays. Saccharide binding activity was monitored by following the fluorescence of 4-methylumbelliferyl a-D-mannopyranoside. When Ca2+ binds to demetalized concanavalin A, the transition metal ion site is hindered. When Mn2+ alone binds to demetalized concanavalin A, saccharide binding activity is induced. A subsequent conformational change, not necessary for carbohydrate binding activity, covers the Mn2+.  相似文献   

14.
The mitogenic response of human peripheral blood lymphocytes to the lectin concanavalin A (conA) is inhibited by micromolar concentrations of CdCl2. This inhibition is partially relieved by an increase in the external Ca2+ concentration (from 0.6 to 2.2 mM). The initial rate of conA-induced 45Ca2+ influx is unaltered by CdCl2, although the level of 45Ca2+ accumulation increases. The basal rate of 45Ca2+ entry is not measurably disturbed by CdCl2 (100 microM). The steady-state efflux of 45Ca2+ and the calmodulin-activated (Ca2+ + Mg2+)-ATPase activity of erythrocyte ghosts are inhibited by CdCl2 (10 microM). Thus, the mechanism behind the Cd2+-induced suppression of the mitogenic response to conA is not due to alteration of mitogen-stimulated Ca2+ influx. We suggest that Cd2+ competes with Ca2+ for intracellular Ca2+-binding molecules, such as calmodulin, essential for the induction of cell proliferation.  相似文献   

15.
The adaptation to extreme concentrations of Ca2+ and its consequence on the properties of the 45Ca2+ transport were studied in submerged mycelia of Trichoderma viride. The adaptation to low [Ca2+]o did not cause changes in kinetic parameters of the 45Ca2+ influx but the adaptation to high [Ca2+]o increased the KM(Ca2+). The Vmax of the 45Ca2+ influx decreased with the age of (non-adapted) mycelia with concomitant decrease of the KM(Ca2+) these changes were prevented in mycelia adapted to high Ca2+. High [Ca2+]o decreased the stimulation by the uncoupler, 3, 3′, 4′, 5-tetrachloro salicylanilide (TCS) (30 μM), as compared to the control, whereas the Ca2+ chelator, EGTA, stimulated it. In the aged mycelia, the stimulation by TCS of the 45Ca2+ influx faded away, in parallel with the activity of the H+-ATPase. The 45Ca2+ efflux from mycelia was affected by TCS in a similar way as the 45Ca2+ influx. The results demonstrate the adaptive responses of transport processes participating in the mycelial Ca2+ homeostasis and ageing are in agreement with a notion that both Ca2+-influx and-efflux are coupled by the H+-homeostasis at the plasma membrane.  相似文献   

16.
Felle HH  Zimmermann MR 《Planta》2007,226(1):203-214
Using apoplastic voltage- and ion selective microprobes, in barley leaves action potentials (APs) have been measured, which propagate acropetally as well as basipetally from leaf to leaf or from root to leaf following the application of mild salt stress (e.g. 30–50 mM KCl or NH4Cl) or amino acids (e.g. 1 mM glutamic acid or 5 mM GABA). Voltage changes were biphasic, followed an ‘all-or-none’ characteristic, and propagated at 20–30 cm min−1 irrespective of the direction. With the salt-induced APs, a strong initial depolarization is the main AP-releasing factor that first causes Ca2+ influx and then anion efflux. Ca2+ influx coincides with an initial slower depolarization, the rapid anion efflux causes the typical voltage ‘break-through’. Subsequently, K+-efflux starts after the depolarizing voltage has passed the K+ equilibrium potential (inversion of the K+ driving force). Glutamic acid and GABA induce APs not through membrane depolarization, but presumably by binding to a putative receptor or to ligand-gated Ca2+-conducting channels, respectively, followed by Ca2+ induced activation of anion efflux. APs are accompanied by transient apoplastic pH increase (about 1 unit), and by cytoplasmic pH decrease (about 0.5 units). The apoplastic pH change is interpreted as an indicator of stress, the cytoplasmic pH change as a prerequisite for defence related gene activation. Since APs are released by agents added in a moderate concentration range, it is suggested that they may serve as first and fast systemic signals following attack from pathogens.  相似文献   

17.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

18.
19.
Blood platelets, upon stimulation with various substances, take up calcium ions from the suspending medium. This influx occurs simultaneously with the release reaction, i.e. the specific secretion of a variety of substances from storage organelles and the second wave of aggregation. Various inhibitors of the release reaction inhibit this Ca2+ influx. Platelets previously loaded with 45Ca show an increased efflux of the cation upon stimulation by thrombin. These results suggest that the plasma membrane acquires an increased permeability to Ca2+ only in a later phase of platelet activation, in most cases after the earlier release of Ca2+ into the cytoplasm from Ca-storing organelles. Rapid shape change and release proceed independently of external calcium, whereas clot retraction depends upon a prolonged increased permeability of the plasma membrane to this cation.  相似文献   

20.
Effects of N-formyl chemotactic peptides on the Ca2+ influx and efflux were investigated in guinea-pig peritoneal macrophages using an isotope tracer. fMet-Leu-Phe did not enhance the influx of 45Ca2+ into macrophages, whereas it stimulated the efflux of 45Ca2+ from macrophages at concentrations ranging from 10?10 M to 10?7 M. fMet-Met-Met and fMet-Leu also stimulated the 45Ca2+ efflux, albeit at much higher concentrations, while there was no stimulation with fMet. The mitochondrial inhibitors, oligomycin and NaN3, did not modify the 45Ca2+ efflux induced by the chemoattractants, yet they did induce the release of 45Ca2+ from the mitochondria. On the other hand, higher concentrations of the calmodulin antagonists, chlorpromazine and trifluoperazine, induced the release of 45Ca2+ from the NaN3-insensitive Ca2+ store site and mimicked the enhancement of the 45Ca2+ efflux by N-formyl chemotactic peptides. Thus, N-formyl chemotactic peptides appear to increase the levels of intracellular free Ca2+ in guinea-pig peritoneal macrophages, probably by inducing the release of Ca2+ from the NaN3-insensitive Ca2+ store site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号