首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Genes and proteins related to patatin, the major storage protein of potato tubers, have been identified in many plant species and shown to be induced by a variety of environmental stresses. The Arabidopsis patatin-like gene family (PLPs) comprises nine members, two of which (PLP2 and PLP7) are strongly induced in leaves challenged with fungal and bacterial pathogens. Here we show that accumulation of PLP2 protein in response to Botrytis cinerea or Pseudomonas syringae pv. tomato (avrRpt2) is dependent on jasmonic acid and ethylene signaling, but is not dependent on salicylic acid. Expression of a PLP2-green fluorescent protein (GFP) fusion protein and analysis of recombinant PLP2 indicates that PLP2 encodes a cytoplasmic lipid acyl hydrolase with wide substrate specificity. Transgenic plants with altered levels of PLP2 protein were generated and assayed for pathogen resistance. Plants silenced for PLP2 expression displayed enhanced resistance to B. cinerea, whereas plants overexpressing PLP2 were much more sensitive to this necrotrophic fungus. We also established a positive correlation between the level of PLP2 expression in transgenic plants and cell death or damage in response to paraquat treatment or infection by avirulent P. syringae. Interestingly, repression of PLP2 expression increased resistance to avirulent bacteria, while PLP2-overexpressing plants multiplied avirulent bacteria close to the titers reached by virulent bacteria. Collectively, the data indicate that PLP2-encoded lipolytic activity can be exploited by pathogens with different lifestyles to facilitate host colonization. In particular PLP2 potentiates plant cell death inflicted by Botrytis and reduces the efficiency of the hypersensitive response in restricting the multiplication of avirulent bacteria. Both effects are possibly mediated by providing fatty acid precursors of bioactive oxylipins.  相似文献   

3.
This paper reports the cloning of a cDNA (Vupat1) expressed in Vigna unguiculata leaves coding for a protein with 48% sequence homology to patatin, the major protein from potato tuber which has lipolytic acylhydrolase activity. Two cultivars differing in drought tolerance were examined in Northern-blot analyses. Expression of Vupat1 is stimulated by drought stress, especially in the drought-sensitive cultivar. Vupat1 was expressed in the baculovirus system as a fusion protein secreted in the culture medium. The recombinant protein displays lipolytic activity towards monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulphoquinovosyldiacylglycerols.  相似文献   

4.
Acetyl-CoA hydrolase, catalyzing the hydrolysis of acetyl-CoA, is presumably involved in regulating the intracellular acetyl-CoA pool. Recently, a yeast acetyl-CoA hydrolase was purified to homogeneity from Saccharomyces cerevisiae and partially characterized (Lee, F.-J. S., Lin, L.-W., and Smith, J. A. (1989) Eur. J. Biochem. 184, 21-28). In order to study the biological function and regulation of the acetyl-CoA hydrolase, we cloned and sequenced the full length cDNA encoding yeast acetyl-CoA hydrolase. RNA blot analysis indicates that acetyl-CoA hydrolase is encoded by a 2.5-kilobase mRNA. DNA blot analyses of genomic and chromosomal DNA reveal that the gene (so-called ACH1, acetyl-CoA hydrolase) is present as a single copy located on chromosome II. Acetyl-CoA hydrolase is established to be a mannose-containing glycoprotein, which binds concanavalin A. By measuring the levels of ACH1 mRNA and acetyl-CoA hydrolase activity in different growth phases and by examining the effects of various carbon sources, we have demonstrated that ACH1 expression is repressed by glucose.  相似文献   

5.
6.
He Y  Gan S 《The Plant cell》2002,14(4):805-815
SAG101, a leaf senescence-associated gene, was cloned from an Arabidopsis leaf senescence enhancer trap line and functionally characterized. Reporter gene and RNA gel blot analyses revealed that SAG101 was not expressed until the onset of senescence in leaves. A recombinant SAG101 fusion protein overexpressed in Escherichia coli displayed acyl hydrolase activity. Antisense RNA interference in transgenic plants delayed the onset of leaf senescence for approximately 4 days. Chemically induced overexpression of SAG101 caused precocious senescence in both attached and detached leaves of transgenic Arabidopsis plants. These data suggest that SAG101 plays a significant role in leaf senescence.  相似文献   

7.
Myrothamnus flabellifolia, a short woody shrub from southern Africa, can survive severe desiccation of its vegetative organs. We studied mechanisms protecting this plant from oxidative damage during desiccation for 2 weeks, 4 and 8 months, and also during subsequent rehydration. This plant retains high concentrations of chlorophyll during desiccation, and these chlorophyll molecules are probably a source for potentially harmful singlet oxygen production. Desiccation triggered substantial increases in zeaxanthin and redox shifts of the antioxidants glutathione and ascorbate towards their oxidised forms. Simultaneously, the concentrations of violaxanthin, beta-carotene, ascorbate, alpha-tocopherol, and glutathione reductase activity progressively decreased. Antheraxanthin, gamma-tocopherol, lutein, neoxanthin and glucose-6-phosphate dehydrogenase displayed less pronounced changes in response to desiccation. Even after 4 months of desiccation, Myrothamnus flabellifolia recovered rapidly upon rehydration. Re-watering induced formation of ascorbate and glutathione, simultaneous reduction of their oxidised forms, and rapid production of alpha-tocopherol and of various carotenoids. Only after 8 months of desiccation did the antioxidant system of M. flabellifolia break down; 3 weeks after the onset of rehydration, these plants abscised their leaves, but even then they were still able to recover and develop new ones. Ascorbate, beta-carotene and alpha-tocopherol were totally depleted after 8 months of desiccation and did not recover upon rehydration; glutathione was partly maintained, but only in the oxidised form. We present a model demonstrating which parts of antioxidant pathways break down as oxidative stress becomes detrimental and we discuss some potential implications of our results for the genetic modification of crop plants to improve their drought tolerance.  相似文献   

8.
We have isolated a cDNA that encodes a novel member of the Y-box binding protein family, termed as RYB-a (Rat Y-box Binding protein-a). RYB-a is a 31 kDa protein that contains a conserved cold-shock domain and an amino acid alignment similar to those of charge zipper proteins. Expression of RYB-a mRNA was highly abundant in the skeletal muscle, spleen, and fetal liver. The expression is very low in new-born and adult livers, suggesting its expression is under developmental regulation. In addition, the expression of RYB-a mRNA was induced in the liver during regeneration and by stimulation of quiescent fibroblast cells with serum. Induction in the fibroblasts was inhibited by treating the cell with a specific tyrosine kinase inhibitor, genistein or by detachment of cell-adhesion. Since both treatments are known to inhibit G1 cells to enter S phase, RYB-a gene is thought to be a member of growth-inducible genes.  相似文献   

9.
We have isolated, in guinea-pig endometrial cells, an estrogen-induced 1.8 kb RNA called gec1. Screening of a guinea-pig genomic library led to identification of gec1 gene consisting of 4 exons and 3 introns. Exon 1 contains the 5'UTR and the ATG initiation codon. A guinea-pig gec1 cDNA was obtained by 5'-RACE. The 351 bp coding sequence shares 76.8% identity with that of the human GABARAP 924 bp cDNA while UTRs of the two cDNAs differ. A gec1 probe from the 3'UTR revealed a 1.9 kb mRNA in human tissues and a human GEC1 cDNA was isolated from placenta. Its coding sequence shares 93 and 79% identity with that of guinea-pig gec1 and human GABARAP, respectively. The human and guinea-pig GEC1 proteins have 100% identity. GEC1 and GABARAP proteins have 87% identity and N terminus featuring a tubulin binding motif. Thus, estrogen-regulated gec1 is a new gene which could encode a microtubule-associated protein.  相似文献   

10.
The PCD1 nudix hydrolase gene of Saccharomyces cerevisiae has been cloned and the Pcd1p protein characterized as a diphosphatase (pyrophosphatase) with specificity for coenzyme A and CoA derivatives. Oxidized CoA disulfide is preferred over CoA as a substrate with K(m) and k(cat) values of 24 micrometer and 5.0 s(-1), respectively, compared with values for CoA of 280 micrometer and 4.6 s(-1) respectively. The products of CoA hydrolysis were 3'-phosphoadenosine 5'-monophosphate and 4'-phosphopantetheine. F(-) ions inhibited the activity with an IC(50) of 22 micrometer. The sequence of Pcd1p contains a potential PTS2 peroxisomal targeting signal. When fused to the N terminus of yeast-enhanced green fluorescent protein, Pcd1p was shown to locate to peroxisomes by confocal microscopy. It was also shown to co-localize with peroxisomal thiolase by immunofluorescence microscopy. N-terminal sequence analysis of the expressed protein revealed the loss of 7 or 8 amino acids, suggesting processing of the proposed PTS2 signal after import. The function of Pcd1p may be to remove potentially toxic oxidized CoA disulfide from peroxisomes in order to maintain the capacity for beta-oxidation of fatty acids.  相似文献   

11.
Mannosylglycerate (MG) is a common compatible solute found in thermophilic and hyperthermophilic prokaryotes. In this study we characterized a mesophilic and bifunctional mannosylglycerate synthase (MGSD) encoded in the genome of the bacterium Dehalococcoides ethenogenes. mgsD encodes two domains with extensive homology to mannosyl-3-phosphoglycerate synthase (MPGS, EC 2.4.1.217) and to mannosyl-3-phosphoglycerate phosphatase (MPGP, EC 3.1.3.70), which catalyze the consecutive synthesis and dephosphorylation of mannosyl-3-phosphoglycerate to yield MG in Pyrococcus horikoshii, Thermus thermophilus, and Rhodothermus marinus. The bifunctional MGSD was overproduced in Escherichia coli, and we confirmed the combined MPGS and MPGP activities of the recombinant enzyme. The optimum activity of the enzyme was at 50 degrees C. To examine the properties of each catalytic domain of MGSD, we expressed them separately in E. coli. The monofunctional MPGS was unstable, while the MPGP was stable and was characterized. Dehalococcoides ethenogenes cannot be grown sufficiently to identify intracellular compatible solutes, and E. coli harboring MGSD did not accumulate MG. However, Saccharomyces cerevisiae expressing mgsD accumulated MG, confirming that this gene product can synthesize this compatible solute and arguing for a role in osmotic adjustment in the natural host. We did not detect MGSD activity in cell extracts of S. cerevisiae. Here we describe the first gene and enzyme for the synthesis of MG from a mesophilic microorganism and discuss the possible evolution of this bifunctional MGSD by lateral gene transfer from thermophilic and hyperthermophilic organisms.  相似文献   

12.
The Brachyury gene encodes a novel DNA binding protein.   总被引:17,自引:3,他引:14       下载免费PDF全文
  相似文献   

13.
We have previously described the cloning of a group of novel cellular immediate-early response genes whose expression in human umbilical vein endothelial cells is induced by tumor necrosis factor alpha in the presence of cycloheximide. These genes are likely to participate in mediating the response of the vascular endothelium to proinflammatory cytokines. In this study, we further characterized one of these novel gene products named B61. Sequence analysis of cDNA clones encoding B61 revealed that its protein product has no significant homology to previously described proteins. Southern analysis suggested that B61 is an evolutionarily conserved single-copy gene. B61 is primarily a hydrophilic molecule but contains both a hydrophobic N-terminal and a hydrophobic C-terminal region. The N-terminal region is typical of a signal peptide, which is consistent with the secreted nature of the protein. The mature form of the predicted protein consists of 187 amino acid residues and has a molecular weight of 22,000. Immunoprecipitation of metabolically labeled human umbilical vein endothelial cell preparations revealed that B61 is a 25-kilodalton secreted protein which is markedly induced by tumor necrosis factor.  相似文献   

14.
Many genes on the uni linkage group of Chlamydomonas affect the basal body/flagellar apparatus. Among these are five FLA genes, whose mutations cause temperature-sensitive defects in flagellar assembly. We present the molecular analysis of a gene which maps to fla10 and functionally rescues the fla10 phenotype. Nucleotide sequencing revealed that the gene encodes a kinesin-homologous protein, KHP1. The 87-kD predicted KHP1 protein, like kinesin heavy chain, has an amino- terminal motor domain, a central alpha-helical stalk, and a basic, globular carboxy-terminal tail. Comparison to other kinesin superfamily members indicated striking similarity (64% identity in motor domains) to a mouse gene, KIF3, expressed primarily in cerebellum. In synchronized cultures, the KHP1 mRNA accumulated after cell division, as did flagellar dynein mRNAs. KHP1 mRNA levels also increased following deflagellation. Polyclonal antibodies detected KHP1 protein in Western blots of purified flagella and axonemes. The protein was partially released from axonemes with ATP treatment, but not with AMP- PNP. Western blot analysis of axonemes from various motility mutants suggested that KHP1 is not a component of radial spokes, dynein arms, or the central pair complex. The quantity of KHP1 protein in axonemes of the mutant fla10-1 was markedly reduced, although no reduction was observed in two other uni linkage group mutants, fla9 and fla11. Furthermore, fla10-1 was rescued by transformation with KHP1 genomic DNA. These results indicate that KHP1 is the gene product of FLA10 and suggest a novel role for this kinesin-related protein in flagellar assembly and maintenance.  相似文献   

15.
16.
17.
Arabidopsis fusca mutants display striking purple coloration due to anthocyanin accumulation in their cotyledons. We describe six recessive fusca mutants isolated from Agrobacterium-transformed Arabidopsis families. These mutants first become defective during embryogenesis and exhibit limited seedling development. Double mutant constructs revealed that developmental defects were not simply a consequence of anthocyanin accumulation. fusca seedlings showed altered responses to several environmental and endogenous factors. Allelism tests established that three fusca loci are represented by mutants previously described as defective in light-regulated responses. To study the molecular basis of the fusca phenotype, we cloned the FUS6 gene. FUS6 encodes a novel protein that is hydrophilic, alpha-helical, and contains potential protein kinase C phosphorylation sites. The FUSCA proteins appear to act in a network of signal transduction pathways critical for plant development.  相似文献   

18.
S. Dennis  T. Galliard 《Phytochemistry》1974,13(11):2469-2473
Wax ester formation by esterification of a long chain fatty acid (palmitic acid) with a long chain fatty alcohol (octadecanol) was enzymically catalysed by acetone dried powder preparations of potato tubers. The enzyme responsible for wax ester formation had multiple isoenzymic forms and was identical with lipolytic acyl hydrolase, a lipid deacylating enzyme. Tubers from different varietiees of potato (Solanum tuberosum) demonstrated markedly different levels of activity and electrophoretic patterns for both wax ester formation and lipid deacylation.  相似文献   

19.
Seedlings of wheat were grown for 24 h in control nutrient solution and in solutions containing haloxyfop, alloxydim, diquat or paraquat, and thereafter the roots were used for microsomal preparations. Phosphatidylcholine or diacylglycerol with various 1-(14)C-labelled fatty acids (oleic, linoleic, linolenic or ricinoleic acids) in position sn-2 were added to the prepared microsomes. After incubation for 2 h at 30 degrees C, the lipids were extracted and the distribution of radioactivity among lipid classes was determined. In the microsomal preparations of plants treated with diquat and paraquat, the amounts of fatty acids released were similar to the control, whereas they were 1.4-2 times higher in the microsomal preparation of plants treated with haloxyfop and alloxydim. Thus, the data indicate that graminicides could increase lipid catabolism in sensitive plants and that this is not a general phenomenon connected with inhibition of growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号