首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The obligatory methanotroph, Methylosinus trichosporium OB3b, was studied to optimize the batch culture conditions for the formation of particulate methane monooxygenase (pMMO) in a nitrate minimal salts medium. The important medium components investigated were copper, carbon dioxide, and nitrate. The whole-cell specific pMMO activity decreased sharply with increasing copper concentrations in the range of 10-40 muM and remained constant upon further increases of the copper concentration to 120 muM. The cell growth rate (mu), on the other hand, decreased over the entire range (10-120 muM) of copper concentrations tested. When pMMO was produced in a bioreactor with an optimal initial copper concentration of 10 muM, M. trichosporium OB3b exhibited a much faster overall growth rate and a higher whole-cell propene epoxidation activity compared to our earlier study, in which soluble methane monooxygenase (sMMO) was produced with copper-deficient medium. The addition of external carbon dioxide to the bioreactor culture eliminated an initial lag period in the cell growth. When the standard culture medium nitrate concentration (10 mM) was depleted, the pMMO activity, but not the growth rate, decreased rapidly. The whole-cell specific pMMO activity could be maintained by subsequent supplementation of nitrate. A 4-fold higher initial culture medium nitrate concentration of 40 mM, however, resulted in slower cell growth and lower pMMO activity. These observations demonstrate that, in addition to affecting the exclusive production of pMMO, copper also has an important previously unrecognized role in enhancing the growth rate of M. trichosporium OB3b. They also indicate that for the optimal batch production of pMMO with the minimal medium under study, nitrate should be supplied intermittently during the course of cultivation until other culture medium components become growth-limiting.  相似文献   

2.
Continous culture experiments with the obligatory methanotroph, Methylosinus trichosporium OB3b, were conducted to study the whole-cell methane monooxygenase (MMO) and nitrogenase activities in a nitrate minimal salts medium under oxygen-limited conditions with methane as the carbone source. The important variables investigated were the feed medium concentrations of copper and nitrate, CO(2) addition, the agitation speed, and the dilution rate. M. trichosporium OB3b required quantitative amounts of copper (2.6 x 10(-4) g Cu/g dry cell Wt) for the exclusive production of particulate MMo during continous culture growth. When the feed medium nitrate concentration was varied in the range of 5-50 mM, the whole-cell specific pMMO activity exhibited a maximum at 40 mM. The elimination of external CO(2) gassing decreased pMMO activity by more than 30%. The steady-state cell density increased continuously over a 300-700 rpm range of agitation speed, whereas, the pMMO activity became maximal at 400 rpm. Also, the pMMO activity increased with the dilution rate up to 0.06 h(-1) and remained constant thereafter. Maximal continuous pMMO productivity was, thus, achieved in Higgin's medium containing 10 muM Cu, 80 muM Fe, and 40 mM nitrate with an agitation speed of 500 rpm and a dilution rate of 0.06 h(-1). Nitrogenase activity, on the other hand, increased over a feed medium copper concentration of 2-15 muM, falling sharply at 20 muM, and it exhibited a minimum at 20 mM when the feed medium nitrate concentration was varied. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
Batch culture conditions were established for the formation of H(2)-driven whole-cell soluble or particulate methane monooxygenase (sMMO or pMMO) activity in the obligate methanotroph, Methylosinus trichosporum Ob3b, to expand its potential uses in groundwater bioremediation and the production of specific chemicals. Addition of either Ni and H(2) to a nitrate-containing minimal salts growth medium or Ni and Mo to a nitrate-lacking growth medium (induces a nitrogenase that generates intracellular H(2)) markedly enhanced both the hydrogenase and the accompanying washed-cell H(2)-driven MMO activities of shake-flask cultured cells. For sMMO containing cells, H(2) provided in vitro reducing power for the oxidation of chlorinated solvents such as chloroform and trichloroethylene. Cell cultivations under N(2)-fixing conditions in a 5-L bioreactor, however, required an initial nitrate concentration of at least 1 to 2 mM to achieve high biomass yields (5 to 7 g of dry cell wt/L) for cells producing H(2)-driven sMMO or pMMO activity. Elevation of the initial medium nitrate concentration to 20 mM shortened the culture time for pMMO producing cells by 40%, yet still generated an equivalent growth yield. High nitrate also shortened the culture time for sMMO containing cells by approximately 25%, but it lowered their biomass yield by 26%. Upon storage for 5 weeks at room temperature, washed resting-state cells retained 90% and 70% of their H(2)-driven sMMO and pMMO activity, respectively. This makes their practical use quite feasible. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
甲烷氧化菌吸附膜反应器中环氧丙烷的连续生物转化   总被引:1,自引:0,他引:1  
以流化床作为固定化体系 ,在硅藻土颗粒表面构建了混合培养的甲烷氧化细菌的吸附膜。研究发现延迟期后固定化细胞的甲烷单加氧酶活性明显增加。流化床中 90 %以上的甲烷氧化细菌以吸附形式存在。吸附膜浓度为 3.3~3.7 mgdryweightcell gDS。通过批式反应考察了丙烯 甲烷共氧化过程合成环氧丙烷的可能性。研究了甲烷对丙烯环氧化以及丙烯对甲烷氧化细菌生长的影响。通过最佳配比的混合反应气体 (methane :35 % ;propene :20% ;oxygen :45 % )连续循环通入流化床反应器中抽提产物环氧丙烷 ,克服了产物抑制。该生物反应器最初产生环氧丙烷的日产量为 110~ 150μmol d ,连续操作25d ,未观察到环氧丙烷生产能力的明显减小.  相似文献   

5.
Mixed culture methanotrophic attached biofilms immobilized on diatomite particles in a three-phase fluidized bed reaction system were developed. Methane monooxygenase (MMO) activity on diatomite particles increased as soon as the lag phase ended. More than 90% of the MMO activity in the fluidized bed was attached. A biofilm concentration of 3.3c3.7mg dry weight cell (dwc) per g dry solid (DS) was observed. Batch experiments were performed to explore the possibility of producing epoxypropane by a propene–methane co-oxidation process. The effect of methane on the epoxidation of propene and the effect of propene on the growth of methanotroph was also studied. In continuous experiments, optimum mixed gas containing 35 methane, 20 propene and 45% oxygen were continuously circulated through the fluidized bed reactor to deliver substrates and extract product. Initial epoxypropane productivity was 110–150 μmol/day. The bioreactor operated continuously for 53 days without obvious loss of epoxypropane productivity.  相似文献   

6.
Methanotrophs have promising applications in the bioremediation of chlorinated hydrocarbons and in the production of a biopolymer, poly-beta-hydroxybutyrate (PHB). Batch bioreactor culture conditions were studied for the accumulation of PHB by methane-grown Methylosinus trichosporium OB3b, and to evaluate the effect of PHB on the bacterial capacity to degrade trichloroethylene (TCE), a common groundwater contaminant. The PHB content of the washed and lyophilized cells was measured by gas chromatography (GC), after hydrochloric acid (HCl) propanolysis. A differential GC-based assay was developed for the monomer and the polymer of beta-hydroxybutyrate utilizing 1% and 10% HCl (v/v) reaction mixtures, respectively. During bioreactor growth in a Cu-deficient modified Higgins' medium, the cells accumulated PHB upon depletion of nitrate. A biomass yield of 3.2 g dry wt/L and a PHB accumulation of approximately 10% (w/w) were reached after 140 to 160 h, without adversely affecting the propene or TCE epoxidation specific rate given by whole cells containing soluble methane monooxygenase (sMMO). The TCE biotransformation capacity ( approximately 0.25 mg TCE oxidized/mg dry cell wt) of resting cells containing approximately 10% PHB was consistently approximately 1.6-fold greater than that of cells containing only approximately 2% PHB. Higher levels (>10%) of accumulated PHB did not enhance this biotransformation capacity further. By replacing the bioreactor inlet air + CO(2) mixture with pure O(2) at approximately 85 h of batch operation, a PHB accumulation of approximately 45% was achieved after 160 h, but the whole-cell sMMO activity was markedly decreased. In contrast, cells grown in a 10 muM Cu-supplemented Higgins' nitrate minimal salts medium (particulate MMO formation) accumulated up to 50% PHB in only 120 h, coupled with a very high biomass yield of 18 g dry cell wt/L. High PHB accumulations above approximately 20% by both the -Cu and the +Cu grown cells resulted in a decreased ratio of the electronic cell count to the absorbance at 660 nm, which is commonly used to monitor bacterial growth. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
Summary The growth yield ofMethylococcus capsulatus (Bath) on methane was dependent on the availability of copper in the growth medium. In nitrate mineral salts medium the carbon conversion efficiency increased by 38%, concomitant with the transition from soluble to particulate methane monooxygenase, after transfer from low to high copper medium. An increase in growth efficiency was also observed with ammonia as nitrogen source but not when methanol replaced methane as carbon source. The high growth efficiency is attributed to a reduced NADH requirement for methane oxidation. This could only arise if methanol dehydrogenase was capable of electron transfer, either directly or indirectly to the particulate methane monooxygenase (MMO). The carbon conversion efficiency from methanol with nitrate as nitrogen source was as high as theoretically predicted. It is suggested that the previously low yields of methanotrophs grown on methanol resulted from the use, as nitrogen source, of ammonia which was oxidised by the MMO still present under these growth conditions. The term ‘methanotroph’ is used throughout to distinguish those organisms capable of growth on methane from ‘methylotrophs’ capable of growth on reduced C, compounds other than methane  相似文献   

8.
The toxicity and binding of aluminium to Escherichia coli has been studied. Inhibition of growth by aluminium nitrate was markedly dependent on pH; growth in medium buffered to pH 5.4 was more sensitive to 0.9 mM or 2.25 mM aluminium than was growth at pH 6.6–6.8. In medium buffered with 2-(N-morpholino)ethanesulphonic acid (MES), aluminium toxicity was enhanced by omission of iron from the medium or by use of exponential phase starter cultures. Analysis of bound aluminium by atomic absorption spectroscopy showed that aluminium was bound intracellularly at one type of site with a K m of 0.4 mM and a capacity of 0.13 mol (g dry wt)-1. In contrast, binding of aluminium at the cell surface occurred at two or more sites with evidence of cooperativity. Addition of aluminium nitrate to a weakly buffered cell suspension caused acidification of the medium attributable to displacement of protons from cell surfaces by metal cations. It is concluded that aluminium toxicity is related to pH-dependent speciation [with Al(H2O) 6 3+ probably being the active species] and chelation of aluminium in the medium. Aluminium transport to intracellular binding sites may involve Fe(III) transport pathways.  相似文献   

9.
Methylosinus trichosporium OB3b is a methanotrophic bacterium containing particulate methane monooxygenase (MMO), which catalyzes the hydroxylation of methane to methanol. The methanol is further oxidized to formaldehyde by methanol dehydrogenase (MDH). We developed a novel compulsory circulation diffusion system for cell cultivation. A methane/air mixture (1:1, v/v) was prepared in a tightly sealed gas reservoir and pumped into a nitrate mineral salt culture medium under optimal conditions (5 μM CuSO4, pH 7.0, 30°C). Cells were harvested, washed, and resuspended (0.6 mg dry cells/mL) in a 500 mL flask in 100 mL of 10 mM phosphate buffer (pH 7.0) containing 100 mM NaCl and 1 mM EDTA as MDH inhibitors, and 20 mM sodium formate. A single 12 h batch reaction at 25°C yielded a final concentration of 13.2 mM methanol. The use of a repeated batch mode, in which the accumulated methanol was removed after each of three 8 h cycles over a 24 h period, showed a productivity of 2.17 μmol methanol/h/mg dry cell wt. Finally, a lab-scale reaction performed using a 3 L cylindrical reactor with a working volume of 1 L produced 13.7 mM methanol after 16 h. Our results identify a simple process for improving the productivity of biologically derived methanol and, therefore the utility of methane as an energy source.  相似文献   

10.
Surface-immobilized C. roseus cell cultures were grown in a 20-l modified airlift bioreactor operated at 0.51 vvm (kLa approximately 8 h-1) under various gassing regimes [air, 2% (v/v) and 5% CO2]. Extracellular ammonium, phosphate, and nitrate ions as well as carbohydrate uptake and pH value of the medium were monitored together with on-line dissolved oxygen concentration, conductivity of the medium, and carbon dioxide production rate (CPR) of the cultures. Cultures supplemented with 2% CO2 showed higher nitrate (5.0-7.0 mM d-1) and carbohydrate (3.3 g l-1 d-1) uptake rates and biomass production (mu approximately 0.24 d-1, yield approximately 0.33 g dw g CHO-1 and 7.4 g dw L-1) as compared to air (3.6 mM d-1, 2.1 g l-1 d-1; 0.20 d-1, 0.25 g dw g CHO-1 and 5 g dw l-1) and 5% CO2 (2.0-3.6 mM d-1, 2.0 g l-1 d-1; 0.11 d-1, 0.20 g dw g CHO-1 and 5 g dw l-1) cultures and as reported previously for suspension cultures. In addition, air and 5% CO2 cultures displayed incomplete carbohydrate uptake and, more important, phosphate and ammonium ion release into the medium at the end, which was ascribed to loss of viability. This was not observed for 2% CO2 immobilized bioreactor as well as shake flask control suspension cultures, which suggests that sparged C. roseus surface-immobilized cell cultures require 2% CO2 supplementation of the gas phase for both maximum growth and retained viability. The maximum CPRs of all cultures were in the same range (2.1-2.8 mM CO2 l-1 h-1). However, the estimated maximum specific CO2 production rates of 2% CO2 and 5% CO2 immobilized cultures (0.6 mM g dw-1 h-1) were lower than those found for air-sparged immobilized cultures (1.0-1.3 mM g dw-1 h-1). These rates are significantly higher than those reported in the literature for C. roseus cell suspension cultures performed in bioreactors gassed with air (approximately 0.2-0.55 mM g dw-1 h-1).  相似文献   

11.
Soluble methane monooxygenase (sMMO) maximization studies were carried out as part of a larger effort directed towards the development and optimization of an aqueous phase, multistage, membrane bioreactor system for treatment of polluted groundwater. A modified version of the naphthalene oxidation assay was utilized to determine the effects of methane:oxygen ratio, nutrient supply, and supplementary carbon sources on maximizing and maintaining sMMO activity inMethylosinus trichosporium OB3b.Methylosinus trichosporium OB3b attained peak sMMO activity (275–300 nmol of naphthol formed h–1 mg of protein–1 at 25°C) in early stationary growth phase when grown in nitrate mineral salts (NMS) medium. With the onset of methane limitation however, sMMO activity rapidly declined. It was possible to define a simplified nitrate mineral salts (NMS) medium, containing nitrate, phosphate and a source of iron and magnesium, which allowed reasonably high growth rates (max 0.08 h–1) and growth yields (0.4–0.5 g cells/g CH4) and near maximal activities of sMMO. In long term batch culture incubations sMMO activity reached a stable plateau at approximately 45–50% of the initial peak level and this was maintained over several weeks. The addition of d-biotin, pyridoxine, and vitamin B12 (cyanocobalamin) increased the activity level of sMMO in actively growing methanotrophs by 25–75%. The addition of these growth factors to the simplified NMS medium was found to increase the plateau sMMO level in long term batch cultures up to 70% of the original peak activity.Abbreviations sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - NMS nitrate mineral salts - TCE trichloroethene - NADH reduced nicotinamide adenine dinucleotide  相似文献   

12.
Particulate methane monooxygenase (pMMO) has been exfoliated and isolated from membranes of the Methylosinus trichosporium IMV 3011. It appears that the stability of pMMO in the exfoliation process is increased with increasing copper concentration in the growth medium, but extensive intracytoplasmic membrane formed under higher copper concentration may inhibit the exfoliation of active pMMO from membrane. The highest total activity of purified pMMO is obtained with an initial concentration of 6 microM Cu in the growth medium. The purified MMO contains only copper and does not utilize NADH as electron donor. Treatment of purified pMMO with EDTA resulted in little change in copper level, suggesting that the copper in the pMMO is tightly bound with pMMO.  相似文献   

13.
Boiesen  Anette  Arvin  Erik  Broholm  Kim 《Biodegradation》1993,4(3):163-170
The effect of different mineral nutrients on the kinetics of methane biodegradation by a mixed culture of methanotrophic bacteria was studied. The substrate factors examined were ammonia, iron, copper, manganese, phosphate, and sulphide. The presence of iron in the growth medium had a strong effect on the yield coefficient. Yield coefficients up to 0.49 mg protein per mg methane were observed when iron was added at concentrations of 0.10–5.0 mg/l. Iron addition also increased the maximum methane utilization rate. The same effect was observed after addition of ammonium to a medium where nitrate was the only nitrogen source. The observed Monod constant for methane utilization increased with increasing concentration of ammonia. This shows that ammonia is a weak competitive inhibitor as observed by other researchers. Relatively high levels of both ammonia (70 mg/l) and copper (300 µg/l) inhibited the methane degradation, probably due to the toxic effect of copper-amine complexes.  相似文献   

14.
A bioreactor system equipped with a hollow fiber cross-filtration module was used for continuous cultivation of Lactobacillus acidophilus at high cell concentrations. The growth rate did not correlate with the lactate concentration if the residual glucose concentration was kept nearly zero in the culture broth. To achieve this, an effective control method of medium feed rate was developed on the basis of the correlation between the specific glucose consumption rate (nu) and the specific cell growth rate (mu), i.e. nu = 52.90 mu + 0.39. Growth up to 50 g dry wt l-1 was achieved without glucose accumulation under the total cell recycle. Via the partial cell recycle, continuous biomass production was achieved with a steady-state L. acidophilus concentration and dilution rate being 40 gl-1 and 0.09 h-1. © Rapid Science Ltd. 1998  相似文献   

15.
Growth and alkaloid production in Uncaria tomentosa cell suspension cultures were studied in Murashige and Skoog medium supplemented with 10 microM 2,4-dichlorophenoxyacetic acid, 10 microM kinetin, and 58 mM sucrose for maintenance and with 10 microM indole-3-acetic acid, 10 microM kinetin, and 58 mM sucrose for production. A U. tomentosa pale Uth-3 cell line, cultured in the production medium, showed a reduced lag phase and a specific growth rate (mu) of 0.27 day(-1), while cells growing in the maintenance medium showed mu = 0.20 day(-1). U. tomentosa cells growing in the production medium produced monoterpenoid oxindole alkaloids (MOA) in amounts of 10.2 +/- 1.6 microg g(-1) dry weight (DW). The chemical profile of MOA produced by in vitro cell cultures was similar to that found in the plant. After 10 subcultures, maximum MOA production decreased to 2.0 +/- 0.7 microg g(-1) DW, while tryptamine alkaloids (TA) were produced with a maximum of 6.2 +/- 0.4 microg g(-1) DW. The increase of initial sucrose concentration up to 145 mM in the production medium enhanced the cell biomass by 3.2-fold (from 10.2 +/- 0.1 to 32.8 +/- 1.1 g DW L(-1)), reduced mu from 0.27 to 0.23 day(-1), and provoked a substantial accumulation of TA (23.1 +/- 4.7 microg g(-1) DW). A high sucrose concentration stimulated MOA production in the maintenance medium (2.7 +/- 0.5 microg g(-1) DW), even in the presence of 2,4-dichlorophenoxyacetic acid.  相似文献   

16.
The influence of phosphate on the medium-induced formation of cinnamoyl putrescines in cell cultures of Nicotiana tabcum was investigated. Phosphate added to a phosphate-free production medium was completely accumulated in the cells within 24h after inoculation at initial concentrations up to 2 mM. At higher concentrations phosphate was partly accumulated with an intracellular saturation at approx. 0.65 mmol/g dr. wt. equivalent to approx. 45 mM intracellular concentration. Enhanced activities of phenylalanine ammonialyase and increased product levels of cinnamoyl putrescines, induced by cell transfer into phosphatefree medium were suppressed similarly at initial phosphate concentrations of 0.02–0.5 mM. At the same time growth was stimulated.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - fr. wt. fresh weight - dr. wt. dry weight - MS-medium Murashige-Skoog-medium (Murashige and Skoog 1962)  相似文献   

17.
Culture conditions for the mass production of three green algae, Chlorella sp., Dunaliella salina DCCBC2 and Dunaliella sp., were optimized using a response surface methodology (RSM). A central composite design was applied to investigate the effects of initial pH, nitrogen and phosphate concentrations on the cultivation of microalgae. The optimal growth conditions estimated from the design are as follows: Chlorella sp. (initial pH 7.2, ammonium 17 mM, phosphate 1.2 mM), D. salina DCCBC2 (initial pH 8.0, nitrate 3.3 mM, phosphate 0.0375 mM) and Dunaliella sp. (initial pH 8.0, nitrate 3.7 mM, phosphate 0.17 mM). Culturing the microalgae with the optimized conditions confirmed that the maximum growth rates were attained for these parameters. The optimum CO(2) concentrations of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 1.0, 3.0 and 1.0% (v/v), respectively. The specific growth rates (μ) of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 0.58, 0.78 and 0.56 day(-1), respectively, and the biomass productivities were 0.28, 0.54 and 0.30 g dry cell wt l(-1) day(-1), respectively. The CO(2) fixation rates of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 42.8, 90.9 and 45.5 mg l(-1) day(-1), respectively. Mixotrophic cultivation of Chlorella sp. with glucose increased biomass productivity from 0.28 to 0.51 g dry cell wt l(-1) day(-1). However, D. salina DCCBC2 and Dunaliella sp. were not stimulated by several organic compounds tested.  相似文献   

18.
Macrophytic marine red algae are a diverse source of bioactive natural compounds. "Microplantlet" suspension cultures established from red algae are potential platforms for biosynthesis of these compounds, provided suitable bioreactor configurations for mass culture can be identified. The stirred tank bioreactor offers high rates of gas-liquid mass transfer, which may facilitate the delivery of the CO(2) in the aeration gas to the phototrophic microplantlet suspension culture. Therefore, the effects of impeller speed and CO(2) delivery on the long-term production of microplantlet biomass of the model red alga Agardhiella subulata was studied within a stirred tank photobioreactor equipped with a paddle blade impeller (D(i)/D(T) = 0.5). Nutrient medium replacement was required for sustained biomass production, and the biomass yield coefficient based on nitrate consumption was 1.08 +/- 0.09 g dry biomass per mmol N consumed. Biomass production went through two exponential phases of growth, followed by a CO(2) delivery limited growth phase. The CO(2)-limited growth phase was observed only if the specific growth rate in the second exponential phase of growth was at least 0.03 day(-)(1), the CO(2) delivery rate was less than 0.258 mmol CO(2) L(-)(1) culture h(-)(1), and the plantlet density was at least 10 g fresh mass L(-)(1). Increasing the aeration gas CO(2) partial pressure from 0.00035 to 0.0072 atm decreased the cultivation pH from 8.8 to 7.8, prolonged the second exponential phase of growth by increasing the CO(2) delivery rate, and also increased the photosynthetic oxygen evolution rate. Impeller speeds ranging from 60 to 250 rpm, which generated average shear rates of 2-10 s(-)(1), did not have a significant effect on biomass production rate. However, microplantlets cultivated in a stirred tank bioreactor ultimately assumed compact spherical shape, presumably to minimize exposure to hydrodynamic stress.  相似文献   

19.
Methanotrophs containing methane monooxygenase (MMO) can catalyze the epoxidation of propene to epoxypropane. Methane cannot support dense biomass growth due to its low aqueous solubility. Low growth rate is important limiting factor for the application of methanotrophs. Methanol can act as growth substrate, but direct addition of methanol is toxic to most methanotrophs. The MMO activity during growth on methanol is also uncertain. In this paper, methanol-adapted Methylosinus trichosporium IMV 3011 was successfully cultivated at high cell densities using methanol as sole carbon source. A biomass density of 1.68 g dry weight cell l?1 was achieved and cells contained almost 80% of the MMO activity measured for cells grown with methane. It has been found that methanol can also act as the electron-donating substrate to regenerate the NADH and drive epoxypropane synthesis. The effect of methanol supply on the epoxidation capacity of Methylosinus trichosporium IMV3011 was studied in batch reactor. 0.016% methanol concentration was found to give the highest propene epoxidation capacity.  相似文献   

20.
韩冰  苏涛  杨程  江皓  吴昊  张翀  李信  邢新会 《生物工程学报》2009,25(8):1151-1159
由于甲烷氧化菌只能利用甲烷作为唯一的碳源和能源,存在生长缓慢、细胞密度低、培养困难等问题,限制了其工业应用。解决该问题的有效途径之一是在容易实现高密度培养的异源宿主菌中表达甲烷单加氧酶(Methane monooxygenase,MMO)。本实验室前期首次在一种红球菌中成功地表达了来自于甲烷氧化菌(Methylosinus trichosporium)OB3b的pMMO(颗粒状甲烷单加氧酶),但比酶活较原始菌低很多。本实验在该结果的基础上,通过选用不同的启动子和宿主细胞探索表达pMMO的可能性,结果得到了具有氧化甲烷活性的重组菌,但是产物检测到乙醇的生成,且该重组菌的pMMO活性不稳定,暗示pMMO的催化特性可能发生了变化。另外,很多重组菌检测到pMMO蛋白的表达,但没有催化活性,说明pMMO在宿主细胞中的正确组装是其功能表达的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号