首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An optimization control procedure is developed to describe the function of the human respiratory controller in determination of the respiratory frequency, the expiratory reserve volume, and the physiological dead space volume at all levels of human activity. The required level of alveolar ventilation is considered to have been determined based on the inputs from the peripheral and central chemoreceptors. The proposed procedure describes the mechanical control of breathing in which the excitation signals are adjusted and transferred from the neuron pools in the brainstem to the respiratory muscles to control the rate and depth of breathing. The criterion of minimum average respiratory work rate is used to find the optimal characteristics of respiration. The respiratory frequency, physiologic dead space volume, and expiratory reserve volume are used simultaneously as the optimization variables to minimize the average respiratory work rate. The optimization procedure has been applied by using different airflow patterns at various levels of ventilation. The theoretical results of the study have been compared with the experimental data in exercise taken from the literature. The results show a close agreement between the experimentally measured data and the theoretical values found by the optimization control procedure. The findings attest to the validity of the minimum average work rate criterion and the proposed multivariable optimization procedure compared with other procedures suggested in the literature in control of respiratory mechanics.  相似文献   

2.
3.
By means of retrograde axonal transport of fluorescent tracers, connections between brainstem respiratory related regions and the spinal cord has been studied in the cat. Neurons at the pneumotaxic center project bilaterally (90% ipsi-, 10% contra-) to cervical and lumbar spinal cord and ipsilaterally to thoracic levels. The ventrolateral nucleus of the tractus solitarius project mainly contralaterally (85%) to cervical levels and only contralaterally to thoracic levels; no efferent projections were found to lumbar levels. The ventral respiratory group showed a great number of neurons projecting to the spinal cord especially from the nucleus retroambiguus. Both nuclei, ambiguus and retroambiguus, project mainly contralaterally (70%) to the spinal cord. The B?tzinger complex showed rather scarce bilateral projections to cervical and only ipsilateral projections to lower cervical, thoracic and lumber levels.  相似文献   

4.
The vestibulo-ocular reflex (VOR) and other oculomotor subsystems such as pursuit and saccades are ultimately mediated in the brainstem by premotor neurons in the vestibular and prepositus nuclei that relay eye movement commands to extraocular motoneurons. The premotor neurons receive vestibular signals from canal afferents. Canal afferent frequency responses have a component that can be characterized as a fractional-order differentiation (d k x/dt k where k is a nonnegative real number). This article extends the use of fractional calculus to describe the dynamics of motor and premotor neurons. It suggests that the oculomotor integrator, which converts eye velocity into eye position commands, may be of fractional order. This order is less than one, and the velocity commands have order one or greater, so the resulting net output of motor and premotor neurons can be described as fractional differentiation relative to eye position. The fractional derivative dynamics of motor and premotor neurons may serve to compensate fractional integral dynamics of the eye. Fractional differentiation can be used to account for the constant phase shift across frequencies, and the apparent decrease in time constant as VOR and pursuit frequency increases, that are observed for motor and premotor neurons. Fractional integration can reproduce the time course of motor and premotor neuron saccade-related activity, and the complex dynamics of the eye. Insight into the nature of fractional dynamics can be gained through simulations in which fractional-order differentiators and integrators are approximated by sums of integer-order high-pass and low-pass filters, respectively. Fractional dynamics may be applicable not only to the oculomotor system, but to motor control systems in general.  相似文献   

5.
A mathematical model of the medullary respiratory oscillator, composed of two mutually inhibiting populations (inspiratory and expiratory) of computer-simulated neurons, is presented. Each population consists of randomly interconnected subpopulations of excitatory and inhibitory neurons, is presented. Each population consists of randomly interconnected subpopulations of excitatory and inhibitory neurons. Neuronal coupling is such that either the inspiratory or expiratory population alone is capable of cyclic activity. Weak inhibitory connections between inspiratory and expiratory populations provide satisfactory reciprocating activity independent of the natural frequency of either population alone. Initiation and persistence of rhythmic activity is dependent on a diffused noncyclic excitatory input. Vagal discharge, simulated by phasic inhibition of inspiratory neurons, results in increased respiratory frequency with decreased inspiratory activity. In the absence of simulated vagal discharge, uniform facilitation of synaptic connections increases averaged activities of inspiratory and expiratory populations, with minor effect on frequency. In the presence of simulated vagal discharge, facilitation of synaptic connections increases both frequency and amplitude. The simulated effects of synaptic facilitation, with and without vagal discharge, mimic the physiological response to CO2 in the intact and vagotimized animal.  相似文献   

6.
Several vital systemic functions are controlled by the brainstem, which has been studied in a variety of experimental preparations and by various techniques, including in-vitro electrophysiological preparations. Although these in-vitro approaches have greatly advanced the understanding of brainstem neurons, most recording methods with microelectrodes and patch pipettes are invasive. To take advantage of in-vitro approaches but avoid their potential problems, we have studied brainstem neurons in microelectrode arrays (MEA). Neurons were isolated from the medulla oblongata and cultured in DMEM. Extracellular recordings were performed with no evident perturbations to the cellular environment. Neurons started firing after 24–48 h in culture, reached stable activity in 3–4 weeks, and retained this activity for at least 3 months. From their firing patterns, these neurons could be divided into tonic and bursting units. The latter could be further divided into regular and irregular bursters based on their burst intervals. Cells were stimulated or inhibited by exposure to 10% CO2. The stimulatory effect of CO2, though smaller, was still seen after selective ablation of serotonergic neurons or with low Ca++ and high Mg++ in the extracellular medium. Similar treatments had no significant effect on CO2-inhibited units. The abundance of units with respect to their firing patterns and CO2 responses, together with the long-term stable non-invasive recordings with no evident perturbation to cellular environments, suggests that MEA represent another promising in-vitro approach for studying brainstem neurons.This work was supported by NIH grant (HL058410, HL067890).  相似文献   

7.
Spontaneous rhythmically bursting activity was recorded from the trigeminal, vagal and hypoglossal nerve roots of the isolated brainstem from the frogsRana catesbeiana andRana pipiens superfused with a bicarbonate-free HEPES-buffer solution. Burst frequency, burst duration and the activity profile of the spontaneous neural discharges in vitro resembled those of a less radical preparation, the decerebrate, fictively breathing frog. After complete midsagittal section, each half of the isolated brainstem generated its own rhythmic neural activity which resembled that of the intact isolated brainstem. The spontaneous activity generated within each half of the brainstem is probably coordinated by decussating axons or by groups of neurons located along the midline of the brainstem. Our results suggest that these coordinating entities extend the length of the brainstem (in a rostro-caudal dimension) and the degree of contact rather than the location of the contact between the two halves of the brainstem determines the synchronization of the right and left halves. Burst frequency of both the intact and hemisected brainstem preparation was decreased by alkaline challenge and increased by acid challenge. We conclude that this endogeneous rhythmic activity represents the efferent motor output underlying lung ventilation in these animals.Abbreviations EMG electromyogram - ENG electroneurogram - V trigeminal nerve - Vmd mandibular branch of trigeminal nerve - X vagal nerve - X1 laryngeal branch of vagal nerve - H hypoglossal nerve - Hsh sternohyoid branch of hypoglossal nerve - Hm main branch of hypoglossal nerve  相似文献   

8.
9.
10.
Single unit recordings were made in the dorsal medullary nucleus and in the torus semicircularis of the immobilized grassfrog. The natural calls have a periodic pulsatile structure. To investigate the coding of pulse repetition rate periodic click trains with varying pulse repetition rate and an ensemble of clicks distributed randomly in time were used as stimuli. In the dorsal medullary nucleus strong time-locking to clicks was found. Most units showed an activation followed by suppression response. Some units showed a preference for pulse repetition rates matching their low-frequency sensitivity. In the torus semicircularis part of the units showed responses similar to dorsal medullary nucleus units. Other response types were activation irrespective of pulse repetition rate, and suppression followed by activation. The responses to the two stimulus ensembles were more compatible in the dorsal medullary nucleus than in the torus semicircularis.  相似文献   

11.
Ventilatory regulation by brainstem sites rostral to the midpontile level was assessed in decerebrate cats by comparing the effects of punctate pneumotaxic center lesions with those of midpontile transection. After either procedure, PACO2 was significantly elevated. Moreover an equal suppression of hypercapnia-induced minute volumes and maintenance, at some PACO2 levels, of minute volume responses to hypoxia was observed. Tidal volume elevations accounted for the maintenance of hypoxia-induced minute volumes. Following pneumotaxic center lesions, hypercapnia-induced tidal volumes were higher than those exhibited subsequent to midpontile transection. After carotid sinus nerve section, PACO2 was elevated and hypoxia-induced alterations were abolished. Bilateral vagotomy resulted in apneusis. These data demonstrate that, in the brainstem area examined, only the pneumotaxic center influences the PACO2 level or set point for respiratory activity. A locus of tidal volume generation is ascribed to rostral brainstem sites outside this pneumotaxic center. Data obtained support the hypothesis of a differential brainstem integration of peripheral and central chemoreceptor afferent stimuli.  相似文献   

12.
13.
14.
15.
《Neuron》2022,110(18):3018-3035.e7
  1. Download : Download high-res image (183KB)
  2. Download : Download full-size image
  相似文献   

16.
Using intra- and extracellular recording techniques we examined the spontaneous discharge and membrane properties of respiratory-related neurons in isolated brainstem preparations of the frogs Rana catesbeiana and Rana pipiens that display spontaneous respiratory related activity in vitro. We observed neurons that depolarize during the fictive lung ventilation cycle as well as neurons that depolarize during the non-lung ventilation phase. Respiratory-related neurons demonstrated significant decreases in membrane input resistance during the fictive lung ventilation cycle but showed no evidence of voltage-dependent membrane conductances activated near resting membrane potential. Furthermore, respiratory neurons showed little spike frequency adaptation, their oscillatory activity was not dissociated from the global respiratory motor output following imposed changes in membrane potential, and spontaneous fluctuations in membrane potential were not observed following reversible interruption of respiratory burst activity by application of solutions low in calcium and high in magnesium. Taken together these results suggest that bulbar respiratory neurons in the isolated frog brainstem sampled in our study do not display endogenous bursting characteristics. Rather, they are strongly influenced by synaptic input. Accepted: 20 March 1997  相似文献   

17.
Unit activity was recorded extracellularly from the pontomedullary reticular nuclei of kittens aged 1–5 and 15–30 days, immobilized with diplacin. Properties of neurons located in the medial and lateral zones were compared. As regards the amplitude of spike potentials and types of spontaneous and evoked activity, the cells of the two groups were shown to differ. Tetanic stimulation with a frequency of 300 Hz caused a decrease in the medial zone but an increase in the lateral zone in the number of responding units compared with responses to single stimulation. In neurons of the medial zone intensification of spontaneous activity in the interval between stimuli was more marked and continued after the end of stimulation for a long time. It is suggested that units whose activity is recorded in the medial and lateral zones are mainly giant densely branched and reticular sparsely branched neurons respectively. The difference in the characteristics of activity is connected with the geometry of the dendrites and the foci of their maximal branching.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 140–148, March–April, 1982.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号