首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Comparison of posttetanic changes of the acetylcholine-induced inward current (ACh-current) in command Helix lucorum neurones at different conditions (using stop flow of saline through the chamber with a ganglia preparation and using flow of saline) was made. Flow of saline reduces latency and degree of posttetanic increase of the ACh-current in neurones. Earlier and weak posttetanic potentiation of the ACh-current in command Helix lucorum neurones during flow of saline through the chamber with a ganglia preparation testifies to participation of the humoral factor in the mechanism of posttetanic potentiation of cholinosensitivity of somatic membrane in postsynaptic neurone.  相似文献   

2.
Reactions of command neurones for avoidance behaviour to food were investigated in hungry and satiated snails in "CNS-chemoreceptor" preparations, in which hemolymph was washed out by saline. Neuronal responses in hungry animal preparations differed significantly from responses in satiated animals preparations. Perfusion of hungry animal preparations with hemolymph of satiated animals changed significantly the responses of command neurones for avoidance behaviour. These responses resembled the reactions of the same neurones to food after aversive conditioning to food of hungry snails. The role of humoral factor in learning is discussed.  相似文献   

3.
Regenerative Capacity of Visceral Preganglionic Neurones   总被引:1,自引:0,他引:1  
IT seems to have been widely assumed that autonomic neurones respond to axonal damage much as do somatic motoneurones. From an extensive series of experiments on the albino rat, however, we have obtained evidence that autonomic preganglionic neurones are much more seriously affected. Thus, when the cervical vagus on one side was either crushed or cut, we consistently found in more than 100 animals that changes in the cells of the dorsal motor nucleus of the vagus were more severe and more protracted than in those of the hypoglossal nucleus when its nerve was similarly treated. The changes are seen particularly well in histochemical preparations designed to show the distribution of various metabolic enzymes. In the work described here attention was concentrated on alterations in the cholinesterases and in acid phosphatase.  相似文献   

4.
Neuronal responses of the rat somatosensory cortex grafted into damaged host barrel field to electrical stimulation of the host brain were investigated extracellularly in rats under light pentobarbital anaesthesia. The following structures of the host brain were stimulated: ventrobasal complex and posterior thalamic nuclei, ipsilateral area of vibrissae representation in the sensorimotor cortex and contralateral barrel field. Reactivity of the grafted neurones was lower, than in the intact barrel field, but the mean latencies of responses were not significantly different. Stimulation of the thalamic nuclei was more effective than that of the cortical areas both in grafted and intact barrel fields. Posttetanic depression after repetitive stimulation was often observed in the grafts, while posttetanic potentiation was more usual for the intact barrel field. The data show the sources of some functional afferent inputs to the grafts which may be responsible for neuronal reactions to somatosensory stimulation of the host animal.  相似文献   

5.
The effect of two weeks of tenotomy on posttetanic isometric contractile responses of the rat fast: Extensor digitorum longus and slow: soleus muscles was studied in experiments on isolated muscle preparations. Direct tetanic stimulation (100 impulses, 50 Hz) increased the force of contractions by 20-25% (p < 0.05) of both, control and tenotomized fast muscles. Identical to above tetanic stimulation of control, slow muscle resulted in posttetanic depression, a decrease in the amplitude of contractile responses. Tenotomized slow muscles did not develop posttetanic depression. Caffeine (4 mM) increased and dandrolene (10 microM) decreased the force of unitary and tetanic contractions of control and tenotomized muscles. Neither drug, however, affected development of posttetanic phenomena in ether fast or slow muscles. The fact that in extensor digitorum longus, posttetanic potentiation is preserved for at least forty days of tenotomy but disappears after only 2 weeks of denervation suggests important role of neurotrophic influences in regulation of posttetanic responses of fast muscles.  相似文献   

6.
Both the afferent volleys from the dorsal root and the monosynaptic reflex discharges from the corresponding ventral root were recorded with hook electrodes during stimulation of the nerves innervating the triceps surae muscles. The effects of conditioning high frequency tetanus on the magnitudes of these afferents and reflex volleys were examined in kittens of postnatal age 1-90 days and in adult cats. In young kittens under barbiturate anaesthesia, large-amplitude monosynaptic reflex discharge can be evoked without prior conditioning. The amplitude of this reflex discharge decreased with increasing age of the animal. Application of conditioning tetanic stimuli to the muscle nerves resulted in posttetanic depression followed by posttetanic potentiation of the monosynaptic reflex. The magnitude of posttetanic depression was much higher than that of potentiation in the first postnatal week. As the age increased, the magnitude of depression decreased while the magnitude of potentiation increased. The afferent volley showed a considerable posttetanic potentiation in older kittens and cats. No significant potentiation or depression was observed in the younger animals. Possible mechanisms contributing to posttetanic depression and potentiation are discussed.  相似文献   

7.
Animals with a severe reduction in the number of afferent C-fibres as a consequence of neonatal administration of capsaicin, exhibit a number of neurological and behavioral deficits including increased nociceptive thresholds, altered somato-visceral and viscero-visceral reflexes, depressed cardiovascular and respiratory reflexes and changes in the organisation of spinal cord sensory systems. The reduction in the number of C-fibres produced by neonatal capsaicin does not cause a decrease of similar magnitude in the number of dorsal horn cells driven by the surviving C-fibres. Twenty-two per cent of dorsal horn neurones in capsaicin treated animals respond to electrical stimulation of the surviving afferent C-fibres: a reduction of only 50% from control values. Inhibitory controls on afferent C-fibre evoked responses of dorsal horn neurones are weaker in capsaicin treated rate than in control animals. The cutaneous receptive fields of some dorsal horn neurones can increase in size following stimulation of afferent C-fibres. Tonic descending inhibition on C-fibre evoked responses of dorsal horn neurones is reduced in capsaicin treated rats: fewer neurones show tonic descending inhibition in these animals and those that do are subjected to less powerful inhibitions than similar neurones from control animals. However, some central inhibitory mechanism are unchanged after neonatal capsaicin treatment, specially those that do not involve afferent C-fibres. We suggest that the nervous system develops central inhibition in response to and directed towards the excitations mediated by its afferent drives. Therefore reduced central inhibition in response to a decreased number of afferent C-fibres can compensate for the lost capacity in the signalling of peripheral noxious events.  相似文献   

8.
Extracellular recording of neuronal activity was performed in the medial and lateral septal nuclei (MS and LS) in unanaesthetized rabbits after coagulation of septo-hippocampal connections. The MS neuronal activity had many pathological features. The LS activity was normal in every respect. Spontaneous activity, reactivity to sensory stimuli and main characteristics of responses to sensory stimuli were preserved in LS (and in a part of MS neurones). Sensory effects were augmented in intensity and duration, the number of neurones in LS with theta-bursts increased twofold, theta-bursts were more regular, than in control animals. These effects may be explained by an increase of ascending RF influences, which is supported by the fact of outstanding similarity between sensory and reticular effects in septal neurones after hippocampal disconnection. The number of units with inhibition of activity in response to sensory stimuli decreased, habituation of responses was absent. That means that hippocampal influences are necessary for the organization of inhibitory phenomena in the septum, and, above all, for processes of gradual habituation.  相似文献   

9.
Reactions of neurones pair of positive and negative emotiogenic hypothalamus zones to electrocutaneous stimulation and to intraperitoneal administration of ethanol solution (2 g/kg) were studied in outbred male rats with previously determined attitude to alcohol. In animals who preferred alcohol the neurones of the negative zone were significantly more reactive, and in animals who preferred water the neurones of the positive zone were more reactive. In both studied groups of rats, in most cases ethanol had an inhibitory influence on impulse activity of negative zone neurones, but it acted differently on positive zone neurones: in most cases it intensified neurones impulse activity in rats preferring alcohol and significantly inhibited it in animals rejecting alcohol.  相似文献   

10.
Summary Antibodies prepared to purified brain glutamic acid decarboxylase (GAD), the synthesizing enzyme for the neurotrasmitter, -aminobutyric, acid (GABA), have been utilized with an unlabelled antibody method to localize GABAergic neurones in both light and electron microscopic preparations. A modification of Sternberger's peroxidase-antiperoxidase (PAP) complex is used to localize the site of anti-GAD binding, and the PAP complex is visualized with diaminobenzidine and H2O2. The reaction product is visible in both the light and electron microscopes. The ability to localize and identify labelled profiles in the electron microscope provides more functional information than light microscopical preparations. For example, the GAD-positive reaction product occurs mostly in association with synaptic vesicles within axon terminats, and this localization indicates the importance of GAD for the packaging and storage of GABA. The somata and dendrites of neurones giving rise to these terminals are visualized in colchicine-injected material. The GABAergic neurones form axo-somatic, axo-dendritic, axo-axonal and dendro-dendritic synapses in various regions of the rat central nervous system. Pretreatments of animals with anterograde degeneration have shown the significance of some of the GABAergic terminals that form axo-axonal synapses in the spinal cord.An many brain regions, such as the cerebral cortex, hippocampus and olfactory bulb, virtually all of the GABAergic synapses are derived from local circuit neurones. In other regions such as the cerebellum and neostriatum, the GABAergic terminals are derived from both local circuit neurones and the local axon collaterals of projection neurones that have their somata within these regions. A third type of configuration of GABAergic terminals occurs in the globus pallidus and substantia nigra where these terminals are derived from distant brain regions, axon collaterals of projection neurones and from local circuit neurones. Together, these results indicate the complex organization of the GABAergic system of the brain that has been vividly revealed with electron in croscopical immunocytochemistry.  相似文献   

11.
Nitric oxide (NO) acts as a signalling molecule by activating soluble guanylate cyclase and causing accumulation of the second messenger cyclic guanosine 3',5'-monophosphate (cGMP) in target cells. In order to detect the presence of NO-cGMP signalling pathway in the crayfish abdominal nervous system, accumulation of NO-induced cGMP was investigated by anti-cGMP immunochemistry. Some preparations were incubated in a high-K(+) saline containing an inhibitor of cGMP-degrading phosphodiesterase, 3-isobutyl-1-methyxanthine (IBMX), to activate NO generating neurones, which could release NO in the ganglion, and then immunohistochemistry using an anti-cGMP antibody was performed. The other preparations were incubated in NO donor, sodium nitroprusside (SNP) saline containing IBMX before anti-cGMP immunohistochemistry was performed. The distribution of cGMP-like immunoreactive neurones in high-K(+) treated preparations was similar to that of cGMP-like immunoreactive neurones in NO donor treated preparations. About 70-80 cell bodies and many neuronal branches in the neuropilar area of the ganglion were stained, although no neurones showed immunoreactivity unless preparations were activated by either high-K(+) or the NO donor. Some of them were identical neurones, and they were intersegmental ascending interneurones and motor neurones. Sensory afferents that innervates hind gut showed strong cGMP-like immunoreactivity, although no mechanosensory afferents showed any immunoreactivity. These results strongly suggest the presence of an NO-cGMP signalling pathway that regulates neuronal events in the abdominal nervous system of the crayfish.  相似文献   

12.
Summary Complete neurones were impregnated in the brain of the pulmonate gastropod pond snail, Lymnaea stagnalis L. using the Golgi-Cox method. Mapping of small to medium sized neurones identified in living preparations by the position of the perikarya was possible. Simple monopolar and bifurcating monopolar neurones with varying lateral patterns of short fine fibres were common in the pond snail brain. Larger neurones have more complex and numerous branches originating from axons close to the perikarya than smaller ones. Stem processes originating on the cell body were observed on neurones above 30 in somal diameter. Possible sites for the location of chemical synapses were suggested. Functional types of neurones were difficult to separate on morphological grounds. Giant or very large neurones are small in number in pond snail ganglia, compared with medium or small neurones.The authors wish to thank Mr. Colin Atherton for photographic assistance and the U.K. Science Research Council for a grant to P. R. B.  相似文献   

13.
Spectral analysis (ACG and gSP) of the impulse activity of the neurones of the old rabbits sensorimotor cortex allowed to reveal a trace recruitment of the rhythm--CR analogue to time--in after-action f rhythmic stimulation. Connection was established between the number of presented series of periodic electrocutaneous stimulation and expressiveness of the trace rhythm recruitment depending on the animals age. Trace rhythm recruitment took place slower in old animals (54-56 months) than in young ones (up to 1 year), chiefly in 2-3 experimental days after 2-4 series of rhythmic stimulation and was preserved in a small percent of cases the next day after stimulation. In the background activity of a number of neurones an initial periodicity was discovered, which was intensified under the influence of stimulation by another frequency, or the initial rhythm was extinguished, and stimulation rhythm was reproduced. Periodical stimulation in very old animals (66-85 months) practically did not evoke plastic reconstructions of the cortical neurones. Under the influence of the stimulation a non-specific trace increase of the frequency of neurones background activity of the old animals was observed. The revealed characteristics of plastic neurones properties may testify to projected disturbances of mnestic processes at definite age stages of normal aging.  相似文献   

14.
It has been demonstrated that the effects of aqueous extracts from the native ginseng and extracts of genseng tissue culture on the activity of identified neurones are identical. Neuronal excitability, tested intracellularly, significantly increases to the 60th minute of drug application, whereas gradually developing depolarization simultaneously disappears. Rhythmic orthodromic stimulation revealed the increase in neuronal responses during ginseng perfusion, the synaptic efficiency remaining constant. It is suggested that changes in transmembrane potential level evoked by administration of ginseng preparations are not related to changes in the excitability. Changes in the adaptive capacities of the neurones in invertebrate animals are due to nonspecific endoneuronal shifts in cellular metabolism induced by ginseng administation.  相似文献   

15.
Two groups of rats with different level of motor activities: high- and low-active animals, were distinguished. The blockade of dopamine receptors by haloperidol led to depression of locomotor activity in both groups of rats; in grape snails, haloperidol caused a decrease of the velocity of locomotor responses. In was found that within 5 minutes of intravenous injection of haloperidol the excitability of spinal centers of rats decreased; but in 30 minutes in started restoring. Chronic application of the preparation depressed the effect of posttetanic potentiation of H-response in gastrocnemius muscle of spinal rats. In command neurons of grape snail, chronic injections of haloperidol causes a significant hyperpolarization shift of membrane potential and an increase of threshold of the generation of action potential. It was shown that the selective pharmacological inhibition of dopaminergic system of the brain led to a decrease of excitability in some determined neurons of the snail and spinal motor centers of rats, as well as inhibited the locomotor responses both in vertebrate and in invertebrate animals.  相似文献   

16.
Rats exposed to acute cold (4 degrees C for 2 h), chronic cold (4 degrees C), and chronic-intermittent cold (4 degrees C for 2 h daily) were killed after 1, 2, 3, 4, and 10 days of cold exposure. The control group was maintained at 25 degrees C. In each animal, the plasma concentration of thyrotropine (THS), triiodothyronine (T3), and thyroxine (T4) was determined by radioimmunoassay. At the initial time of exposure, elevations in TSH, T3, and T4 were observed in the rats in each experimental group. However, on the 10th day, in rats exposed to chronic-intermittent cold, TSH, T3, and T4 decreased to values lower than the control values. In animals exposed to acute cold as well as to chronic cold no differences were found, with respect to the controls, in TSH and T4. In rats exposed to acute cold for 10 days, the T3 value was lower than the control value; however, in animals exposed to chronic cold, T3 was same as that in the controls. The results indicate that, in the rat, exposure to chronic-intermittent cold produces an inhibition in the secretion of TSH and thyroid hormones.  相似文献   

17.
Summary The present study describes the ultrastructure of non-neuronal cells and their interrelationships with intracardiac neurones present in cultures dissociated atria and interatrial septum from newborn guinea-pig. When compared with the in situ preparation, most of these features in culture were similar to those observed in situ, but some differences were also apparent. Both mature and immature Schwann cells were observed in culture, and as in situ, the latter were closely associated with intracardiac neurones, whilst the former were more widely separated. The ultrastructure of satellite cells was more variable in culture than in situ: three general types were distinguished on the basis of their 10-nm filament content. This variation could be due to conditions of culture. Interstitial cells were present in culture and closely resembled those described in situ, although there was less space between cultured interstitial cells and their associated cells. Many fibroblasts, some myoblasts and a few mast cells were also found in the culture preparations.  相似文献   

18.
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus.Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists.This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited.Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.Abbreviations TSR thoracic second root - epsp excitatory post-synaptic potential - ipsp inhibitory post-synaptic potential - EJP excitatory jonctional potential - PS power-stroke - RS return-stroke - INT interneurone - N1 first segmental nerve - N2 second segmental nerve - N3 third segmental nerve - A1 abdominal ganglion 1  相似文献   

19.
The possibility of the development of either the long-term posttetanic potentiation or the depression of focal evoked potentials in identified columns of the barrel somatic cortex of unanaesthetized rats during stimulation of their specific thalamocortical afferent fibers was shown. Phase-dependent potentiation developed after burst tetanization with the frequency of theta rhythm at the negative phase of a theta wave, whereas the stimulation at the positive phase produced the depression. Potentiation after continuous tetanization was observed only at the optimal selection of stimuli amplitude and duration. Excessively intense tetanization more frequently caused the depression of tested responses probably due to the involvement of recurrent inhibition.  相似文献   

20.
Injection of K-orotate and folic acid in different proportions and of vitamine B12 produces changes in the S35-methionine inclusion in the proteins of the sensorimotor cortex, basal ganglia, hypothalamus and hippocampus depending on the proportions of the injected agents. In animals with activation of the synthesis in the brain, surface anode polarization increased the mean frequency of spike activity of the neurones in the sensorimotor cortex and reduced the relative number of units, which responded to polarization by inhibition, as compared with the control animals and those in which no activation of protein synthesis was observed. The characteristics of cortical unit responses to surface anode polarization in experimental rats are apparently due to changes in the chemoreactive properties of their membranes, which set in under the influence of changes in the nucleic acid and protein synthesis in these neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号