首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a "uniflagellar" phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein. Immunofluorescence microscopy localized the protein on both basal bodies and probasal bodies. The protein is present as at least two molecular-weight variants that can be converted to a single form with phosphatase treatment. Synthesis of Uni2 protein is induced during cell division cycles; accumulation of the phosphorylated form coincides with assembly of transition zones and flagella at the end of the division cycle. Using the Uni2 protein as a cell cycle marker of basal bodies, we observed migration of basal bodies before flagellar resorption in some cells, indicating that flagellar resorption is not required for mitotic progression. We observed the sequential assembly of new probasal bodies beginning at prophase. The uni2 mutants may be defective in the pathways leading to flagellar assembly and to basal body maturation.  相似文献   

3.
Evidence is presented which supports the concept of a functional membrane barrier in the transition zone at the base of each flagellum of Chlamydomonas eugametos gametes. This makes it unlikely that agglutination factors present on the surface of the cell body can diffuse or be transported to the flagellar membrane. The evidence is as follows: 1) The glycoprotein composition of the flagellar membrane is very different to that of the cell-body plasma membrane. 2) The flagella of gametes treated with cycloheximide, tunicamycin or , -dipyridyl become non-agglutinable but the source of agglutination factors on the cell body is not affected. 3) Even under natural conditions when the flagella are non-agglutinable, for example in vis-à-vis pairs or in appropriate cell strains that are non-agglutinable in the dark, the cell bodies maintain the normal complement of active agglutinins. 4) When flagella of living cells are labeled with antibodies bound to fluorescein, the label does not diffuse onto the cell-body surface. 5) When gametes fuse to form vis-à-vis pairs, the original mating-type-specific antigenicity of each cell body is slowly lost (probably due to the antigens diffusing over both cell bodies), while the specific antigenicity of the flagellar surface is maintained. Even when the flagella of vis-à-vis pairs are regenerated from cell bodies with mixed antigenicity, the antigenicity of the flagella remains matingtype-specific. 6) Evidence is presented for the existence of a pool of agglutination factors within the cell bodies but not on the outer surface of the cells.Abbreviations and symbols CHI cycloheximide - GTC guaniline thiocyanate - mt +/mt - mating type plus or minus - PAS Periodic-acid-Schiff reagent - SDS sodium dodecyl sulphate  相似文献   

4.
Nitrite transport to the chloroplast is not a well documented process in spite of being a central step in the nitrate assimilation pathway. The lack of molecular evidence, as well as the easy diffusion of nitrite through biological membranes, have made this physiological process difficult to understand in plant nutrition. The aim of this review is to illustrate that nitrite transport to the chloroplast is a regulated step, intimately related to the efficiency of nitrate utilization. In Chlamydomonas reinhardtii, the Nar1;1 gene has been shown to have this role in nitrate assimilation. NAR1;1 corresponds to a plastidic membrane transporter protein related to the bacterial formate/nitrite transporters. At least four Nar1 genes might exist in Chlamydomonas. The existence of orthologous Nar1 genes in plants is discussed.  相似文献   

5.
Snell WJ  Pan J  Wang Q 《Cell》2004,117(6):693-697
The recent identification in Chlamydomonas of the intraflagellar transport machinery that assembles cilia and flagella has triggered a renaissance of interest in these organelles that transcends studies on their well-characterized ability to move. New studies on several fronts have revealed that the machinery for flagellar assembly/disassembly is regulated by homologs of mitotic proteins, that cilia play essential roles in sensory transduction, and that mutations in cilia/basal body proteins are responsible for cilia-related human disorders from polycystic kidney disease to a syndrome associated with obesity, hypertension, and diabetes.  相似文献   

6.
The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes—LF1, LF2, LF3, and LF4—cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)—LF1, LF2, and LF3—are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC.  相似文献   

7.
Flagellar axonemes assemble and continuously turn over at the flagellar tip. The supply and removal of axonemal subunits at the tip are mediated by intraflagellar transport (IFT), a motility process essential for the assembly and maintenance of all eukaryotic flagella and cilia. IFT is characterized by the movement of large protein complexes (IFT particles) from the basal bodies to the flagellar tip by kinesin-II and from the tip back to the basal bodies by cytoplasmic dynein 1b. The IFT particles consist of approximately 16 polypeptides partitioned into two complexes, A and B, and associate with axonemal precursors/turn over products. The mechanisms by which IFT motor regulation and cargo loading/unloading occur at the flagellar tip are unknown. We identified a Chlamydomonas reinhardtii ortholog of the microtubule (MT) plus end-tracking protein EB1 [4] (CrEB1) and show here that CrEB1 localizes to the tip of flagella and to the proximal part of the basal bodies. Furthermore, we found that CrEB1 is depleted from flagella of the temperature-sensitive (ts) flagellar assembly-defective (fla) mutant fla11(ts) at the restrictive temperature. This depletion of CrEB1 is accompanied by a dramatic accumulation of IFT particle polypeptides near the flagellar tip.  相似文献   

8.
Chlamydomonas lytic enzyme of the cell wall, which is released during agglutination of gametes of opposite mating types, has been characterized as a metalloprotease. The purified enzyme contains zinc. Removal of zinc with EDTA results in an inactive, metal-free apoenzyme, and Co2+ restores the activity most effectively. Among various protease inhibitors of microbial origin, pepstatin A, chymostatin, antipain, leupeptin, and E-64 do not inactivate the enzyme, whereas phosphoramidon causes a complete loss of lytic activity. Cysteine, histidine, aspartic acid, and glutamic acid also inhibit the activity. The lytic enzyme splits casein and RNase A into several polypeptides of lower molecular masses. To determine which polypeptides of the cell wall are sensitive to the lytic enzyme, we first separated the intact cell walls into sodium perchlorate-soluble and -insoluble components, treated them with enzyme, and then analyzed them by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. We conclude that only 2 of 16 polypeptides are digested by exposure to the enzyme and that the sensitive polypeptides belong to the salt-insoluble component of the cell wall. The mechanism of cell wall digestion with the lytic enzyme is discussed.  相似文献   

9.
10.
In the green unicellular alga Chlamydomonas reinhardtii, as in higher plants, the expression of the genes encoding the chlorophyll a/b-binding (CAB) polypeptides associated with photosystem I (PSI) and photosystem II (PSII) is regulated by endogenous (circadian clock) and exogenous signals (light and temperature). The circadian clock ensures that the oscillation in the levels of the different cab mRNAs is continuously kept in phase with light/dark (LD) cycles and is maximal by the middle of the day. On the other hand, light controls the amplitude of the oscillations. We report here the cloning and characterization of the C. reinhardtii LI818 gene, which identifies a CAB-related polypeptide and whose expression is regulated quite differently from the cabI/II genes. We show: (1) that in LD synchronized Chlamydomonas cells LI818 mRNA accumulation is subject to dual regulation that involves separable regulation by light and an endogenous oscillator; (2) that LI818 mRNA is fully expressed several hours before the cab I/II mRNAs and that the latter accumulate concomitantly; (3) that blocking the electron flow through PSII using DCMU prevents cells from accumulating cab I/II mRNAs but not LI818 mRNA and (4) that the accumulation of LI818 mRNA is abolished by blocking cytoplasmic protein synthesis, suggesting that these regulatory mechanisms are mediated by labile proteins.  相似文献   

11.
The D1-precursor protein of the photosystem II reaction centre contains a carboxy-terminal extension whose proteolytic removal is necessary for oxygen-evolving activity. To address the question of the role of the carboxy-terminal extension in the green alga Chlamydomonas reinhardtii, we truncated D1 by converting codon Ser345 of the psbA gene into a stop codon. Particle gun transformation of an in vitro modified psbA gene fragment also carrying mutations conferring herbicide resistance yielded a homoplasmic transformant containing the stop codon. Since oxygen evolution capacity is not affected in this mutant as compared with herbicide-resistant control cells, the carboxy-terminal extension is dispensable for a functional photosystem II complex under normal growth conditions.  相似文献   

12.
C M Asleson  P A Lefebvre 《Genetics》1998,148(2):693-702
Flagellar length in the biflagellate alga Chlamydomonas reinhardtii is under constant and tight regulation. A number of mutants with defects in flagellar length control have been previously identified. Mutations in the three long-flagella (lf) loci result in flagella that are up to three times longer than wild-type length. In this article, we describe the isolation of long-flagellar mutants caused by mutations in a new LF locus, LF4. lf4 mutations were shown to be epistatic to lf1, while lf2 was found to be epistatic to lf4 with regard to the flagellar regeneration defect. Mutations in lf4 were able to suppress the synthetic flagella-less phenotype of the lf1, lf2 double mutant. In addition, we have isolated four extragenic suppressor mutations that suppress the long-flagella phenotype of lf1, lf2, or lf3 double mutants.  相似文献   

13.
The serum- and glucocorticoid-dependent kinases 1-3 (SGK1-3) are downstream effectors of phosphatidylinositol 3-kinases, implicated in various cell responses including colon cancer tumorigenesis in mice. Here, we investigated the role of SGK1 in the regulation of cell motility. Using Caco-2 colon tumor and HEK293 embryonic kidney cells, we report that transfection with the constitutively active SGK1 mutant (SGK1-SD) significantly enhanced cell motility. The cell-adhesion protein vinculin was effectively dephosphorylated in SGK1-SD-transfected cells. Treatment of the cells with phosphatase inhibitors restored vinculin phosphorylation and inhibited cell migration, indicating a significant role for vinculin phosphorylation in SGK1-induced motility. SGK1-SD-enhanced cell motility was inhibited by activation of membrane androgen-binding sites (mAR) via testosterone-conjugates in both cell lines, whereas intracellular androgen receptor (iAR)-silencing and flutamide treatment revealed that these effects were clearly independent of the interaction of SGK1 with the classical androgen receptors (iAR). More importantly, mAR activation restored vinculin phosphorylation in SGK1-SD-transfected cells, whereas silencing of vinculin fully reversed the mAR-induced inhibition of the migratory capacity, implying that this protein is directly involved in cell motility regulation by SGK1 and mAR. This study indicates for the first time that SGK1 regulates cell migration via vinculin dephosphorylation, a mechanism that is controlled by mAR function.  相似文献   

14.
Surface polypeptide components of the flagellar membrane of Chlamydomonas reinhardi Dang. gametes are identified by their accessibility to in-vivo vectoral labeling by glucose oxidase-coupled lactoperoxidase-dependent 125I iodination. Vectoral labeling is accomplished without observable adverse effects on cell viability or gametic function. Flagella isolated from labeled wild-type cells carry about 3% of the total incorporated label, which is found by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be distributed among 16 identifiable polypeptide bands. The most prominent surface-labeled species migrates in the Mr (relative molecular weight) 350 k region of the gel; each of the remaining iodinated polypeptides, which range in Mr from 25 k to 500 k, carries only a small proportion of incorporated label. To determine which polypeptides are unique to the flagellum and which are contaminants from the cell wall, wild-type profiles were compared with those of mutant strains and of mechanically isolated cell walls. Identification of contaminants was also facilitated by two-dimensional peptide mapping. We conclude that only 11 of the labeled bands are contributed by flagellar polypeptides; the remaining five bands are shown to be contaminants from the cell wall, and additional cell-wall polypeptides are found to co-migrate with flagellar species. A polypeptide designated as a possible membrane tubulin in preliminary studies is shown here to be different from tubulin in its peptide map. The 11 polypeptides assigned as specific flagellar surface components are candidate participants in such biological events as sexual adhesion, flagellar surface motility, and sensory signalling.  相似文献   

15.
By employing living cells of the green alga Chlamydomonas reinhardtii, we demonstrate the possibility of direct electricity generation from microbial photosynthetic activity. The presented concept is based on an in situ oxidative depletion of hydrogen, photosynthetically produced by C. reinhardtii under sulfur-deprived conditions, by polymer-coated electrocatalytic electrodes.  相似文献   

16.
17.
Giardia intestinalis is a binucleated diplomonad possessing four pairs of flagella of distinct location and function. Its pathogenic potential depends on the integrity of a complex microtubular cytoskeleton that undergoes a profound but poorly understood reorganization during cell division. We examined the cell division of G. intestinalis with the aid of light and electron microscopy and immunofluorescence methods and present here new observations on the reorganization of the flagellar apparatus in the dividing Giardia. Our results demonstrated the presence of a flagellar maturation process during which the flagella migrate, assume different position, and transform to different flagellar types in progeny until their maturation is completed. For each newly assembled flagellum it takes three cell cycles to become mature. The mature flagellum of Giardia is the caudal one that possesses a privileged basal body at which the microtubules of the adhesive disk nucleate. In contrast to generally accepted assumption that each of the two diplomonad mastigonts develops separately, we found that they are developmentally linked, exchanging their cytoskeletal components at the early phase of mitosis. The presence of the flagellar maturation process in a metamonad protist Giardia suggests that the basal body or centriole maturation is a universal phenomenon that may represent one of the core processes in a eukaryotic cell.  相似文献   

18.
Gram-negative bacteria utilize specialized machinery to translocate drugs and protein toxins across the inner and outer membranes, consisting of a tripartite complex composed of an inner membrane secondary or primary active transporter (IMP), a periplasmic membrane fusion protein, and an outer membrane channel. We have investigated the assembly and function of the MacAB/TolC system that confers resistance to macrolides in Escherichia coli. The membrane fusion protein MacA not only stabilizes the tripartite assembly by interacting with both the inner membrane protein MacB and the outer membrane protein TolC, but also has a role in regulating the function of MacB, apparently increasing its affinity for both erythromycin and ATP. Analysis of the kinetic behavior of ATP hydrolysis indicated that MacA promotes and stabilizes the ATP-binding form of the MacB transporter. For the first time, we have established unambiguously the dimeric nature of a noncanonic ABC transporter, MacB that has an N-terminal nucleotide binding domain, by means of nondissociating mass spectrometry, analytical ultracentrifugation, and atomic force microscopy. Structural studies of ABC transporters indicate that ATP is bound between a pair of nucleotide binding domains to stabilize a conformation in which the substrate-binding site is outward-facing. Consequently, our data suggest that in the presence of ATP the same conformation of MacB is promoted and stabilized by MacA. Thus, MacA would facilitate the delivery of drugs by MacB to TolC by enhancing the binding of drugs to it and inducing a conformation of MacB that is primed and competent for binding TolC. Our structural studies are an important first step in understanding how the tripartite complex is assembled.  相似文献   

19.
20.
The synthesis and assembly of thylakoid membrane polar glycerolipid (glycolipid, phospholipid, and ether lipid) have been monitored in synchronous cultures of the green alga Chlamydomonas reinhardtii 137+. A "pulse" protocol using radioactive acetate as the lipogenic precursor was devised to allow assessment of both processes during the 24-h (12-h light/12-h dark) vegetative cell cycle. Under these conditions, acetate incorporation into each chromatographically resolved lipid at the cellular level reliably reflects lipid synthesis, and the appearance of radiolabeled lipid in purified photosynthetic membrane is indicative of the lipid assembly attendant to thylakoid biogenesis. Our results demonstrate that polar glycerolipid is synthesized by the alga and is assembled into its thylakoid membrane continuously, but differentially, with respect to cell cycle time. Synthesis and assembly are most rapid during the photoperiod (mid-to-late G1), reach maximum rates at mid- photoperiod, and are comparatively negligible in the dark (S, M, and early-to-mid G1). The extent to which synthesis and assembly vary within this general kinetic pattern, though, is characteristic of each thylakoid lipid, suggesting that the processes take place in a multistep manner with some temporal coordination among the different lipid types. Parallelism between the cyclic patterns of polar lipid synthesis at the cellular level and of polar lipid assembly into photosynthetic membrane at the subcellular level indicates that lipid production is not only essential to continuing thylakoid biogenesis but is also the critical determinant of the kinetics of thylakoid lipid assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号