首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the effect of GnRH (100 microg i.m.) treatment 5 and 15 days after timed insemination (TAI) on pregnancy rate and pregnancy loss in lactating dairy cows subjected to synchronization of ovulation. The study included 831 lactating dairy cows subjected to a Presynch-Ovsynch protocol for first service. On the day of TAI (Day 0), cows were randomly assigned to one of four experimental groups. Cows in Group 1 (n = 214) were treated with GnRH on Day 5; cows in Group 2 (n = 209) were treated with GnRH on Day 15; cows in Group 3 (n = 212) were treated with GnRH on both Day 5 and Day 15; cows in Group 4 (n = 196) were not treated. Pregnancy rate was evaluated at Day 27 and Day 45 after TAI. The interestrus interval and the proportion of cows diagnosed not pregnant based on expression of estrus and insemination before pregnancy diagnosis on Day 27 were determined. The results of this study are: (1) GnRH treatment on Day 5 or Day 15 did not increase pregnancy rate, or reduce pregnancy loss between Day 27 and Day 55 after TAI; (2) cows treated with GnRH on both Day 5 and Day 15 had a lower (P < 0.01) proportion of cows diagnosed not pregnant based on expression of estrus before ultrasonography on Day 27 (26.5%) compared to control cows (52.9%), and these cows had an extended (P = 0.05) interestrus interval (23.4 days vs. 21.5 days); and (3) GnRH treatment on both Day 5 and Day 15 after TAI reduced pregnancy rate on Day 27 (36.8% vs. 44.4% for control cows; P < 0.03) and Day 55 (28.3% vs. 36.2% for control cows; P < 0.01). Therefore, strategies to stimulate CL function using multiple doses of GnRH during the luteal phase need to consider potential negative effects.  相似文献   

2.
The objectives of the present study were to determine the effects of resynchronization with GnRH on Day 21 after artificial insemination (AI) on pregnancy rate and losses of pregnancy in lactating dairy cows. Holstein cows (n=585) on two dairy farms were assigned to one of two treatments in a randomized complete block design. On Day 21 after a pre-enrollment AI, animals assigned to the resynchronization (RES) group received 100 microg of GnRH i.m., whereas animals in the control (CON) group received no treatment. All animals were examined ultrasonographically on Days 21 and 28 after AI, and blood samples were taken for progesterone measurement on Day 21. Pregnancy was diagnosed on Day 28 and reconfirmed 14 days later. Nonpregnant cows on Day 28 were inseminated using timed AI after the completion of the Ovsynch protocol 10 and 17 days after enrollment in the study for RES and CON groups, respectively. Progesterone concentration > or =2.35 ng/ml was used as an indicator of pregnancy on Day 21. For RES and CON cows, pregnancy rate at Days 21 (70.9% versus 73.0%, P<0.56), 28 (33.1% versus 33.6%; P<0.80) and 42 (27.0% versus 26.8%; P<0.98) after the pre-enrollment AI did not differ. Administration of GnRH on Day 21 after AI had no effect on pregnancy loss in RES and CON groups from days 21 to 28 (53.2% versus 53.5%; P<0.94) and days 28 to 42 (17.9%; P<0.74) after AI. Pregnancy rate after the resynchronization period was similar for both treatment groups. Resynchronization with GnRH given on Day 21 after AI for initiation of a timed AI protocol prior to pregnancy diagnosis does not affect pregnancy rate and pregnancy loss in lactating dairy cows.  相似文献   

3.
The present study was designed to establish whether factors such as previous estrus synchronization, corpus luteum and embryo number at the time of pregnancy diagnosis, changes in body condition score, milk production, clinical disease (mastitis or lameness) and the inseminating bull affect pregnancy loss from 38 to 90 days of gestation. We derived data from 601 pregnant lactating dairy cows from a single herd. Pregnancy diagnosis was performed by ultrasonography between Day 38 and 44 following insemination. We also recorded corpus luteum and embryo number at this time. Pregnancy loss was defined as a negative pregnancy diagnosis on the second palpation per rectum undertaken between 90 and 96 days after insemination. Data were analyzed using multiple logistic regression methods. Cows that had an additional corpus luteum were eight times less likely to miscarry. The risk of pregnancy loss was 3.1 times higher in cows bearing twins. A one unit reduction in body condition score from previous partum to 30 days postpartum resulted in a 2.4-fold increase in pregnancy loss. We noted a higher incidence of pregnancy loss in cows inseminated using semen from one of the six bulls used. This particular bull led to a 3.4-fold increase in the rate of pregnancy loss. Logistic regression analysis showed no significant effects of previous estrus synchronization, milk production, clinical disease, body condition at previous partum or at pregnancy diagnosis, or body condition change between previous partum and pregnancy diagnosis. Our findings indicate a positive relationship between the presence of an additional corpus luteum and the maintenance of gestation. Risk factors for pregnancy loss were twin pregnancy, reduced body condition after previous parturition and the inseminating bull.  相似文献   

4.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

5.
Pregnancy failure during placentation in lactating dairy cows was associated with low concentrations of serum progesterone. Beef cows have greater serum progesterone and less pregnancy failure. Experiment 1 determined that reduction of serum progesterone affected late embryonic/early fetal loss in suckled beef cows. Cows (n = 40) received progesterone from two new or used controlled internal drug releasing devices, replaced every 5 d, beginning on Day 28 of gestation (mating = Day 0); CL were enucleated on Day 29. Retention of pregnancy was 77% in treated cows and 97% in 78 control cows (P < 0.05). Experiment 2 determined how pregnant, lactating dairy cows with high or low progesterone concentrations during Days 28-34 differed in luteal function or in serum progesterone during replacement therapy. Luteal tissue from such cows was assayed for progesterone and expression of mRNA for genes of endothelin and prostaglandin (PG) systems. Secretion of progesterone and prostaglandins by dispersed luteal cells was determined during incubation with LH, endothelin-1, or arachidonic acid. Neither luteal progesterone nor mRNAs for endothelin or prostaglandin systems differed. Endothelin-1 inhibited secretion of progesterone more (P < 0.05) in luteal cells from cows with low versus high serum progesterone, when incubated with arachidonic acid. Secretion of prostaglandin F2α was increased and that of 6-keto-PGF1α decreased by endothelin-1 in vitro. Serum progesterone during replacement was lower (P < 0.05) for cows with low than high serum progesterone at lutectomy. Thus, clearance, more than luteal production, determined peripheral progesterone in pregnant, lactating dairy cows.  相似文献   

6.
Fifty-three Angus and Hereford beef cows were utilized to investigate the effect of the conceptus on uterine environment during the period of pregnancy recognition. Blood samples were collected on Days 10, 12, 14, 16 and 18. Cows were randomly assigned to be either mated on the subsequent oestrus or serve as cyclic controls. Blood samples were then collected daily from Day 10 until slaughter on Day 15, 16 or 17 from the initiation of oestrus. Uteri were flushed with physiological saline and flushings analyzed for quantitative and qualitative protein changes, calcium, oestradiol-17β and prostaglandin F content. Endometrial explants of caruncular and intercaruncular tissue, and conceptus tissue recovered from pregnant cows were cultured with [3H]-leucine to determine quantitative and qualitative polypeptide synthesis and release. Plasma progesterone concentrations were similar between pregnant and cyclic cows from Day 10 through 17. Only the uterine content of prostaglandin F significantly increased in the ipsilateral horn of pregnant cows on Days 16 and 17. This increase in prostaglandin content was related to the increase in conceptus length from 25 to 40–80 mm. Conceptus production of bovine trophoblastic protein-1 was also first clearly detectable in fluorographs of medium from conceptuses measuring 25 mm. The complexity of the polypeptides present in the medium increased with conceptus development. Polypeptide synthesis by the endometrium was similar between tissues and days; however, production of two groups of low molecular weight basic polypeptides continued to be intensified on fluorographs from the pregnant horn on Day 17 compared to cyclic cows.  相似文献   

7.
This study was conducted to evaluate the use of prostaglandin F2alpha (PGF2alpha) in the initial treatment of ovarian cysts in dairy cattle. Two hundred and sixty three cows diagnosed cystic on palpation per rectum were randomly assigned to one of three treatment groups (A, B or C). Cows in Groups A and B were treated with 25 mg i.m.of PGF2alpha at the time of diagnosis (Day 0), while cows in Group C received 100 mug of GnRH. Seven days following initial treatment (Day 7), cows from Group A that were not observed in estrus were treated with GnRH. Cows from Groups B and C were not treated. On Day 14, all cows that had not been inseminated received PGF2alpha. A blood sample was obtained from all cows on Days 0, 7 and 14 and was analyzed for progesterone (P4) using radioimmunoassay. Incidences of estrus were recorded and cows that were more than 60 d in milk at the time of diagnosis were bred when observed in estrus. The incidence of follicular cysts on Day 0 (as defined as P4 <0.5 ng/ml) was similar between groups and constituted about 40% of all cysts. There were significantly more cows pregnant to insemination within 7 d of initial treatment in Group B than in Groups A and C (P<0.05). After Day 14, the pregnancy rate was not statistically different between Group B and C, but Groups B and C had a statistically higher pregnancy rate than Group A from Day 21 to Day 35. At the end of the study, there was no statistical difference for the pregnancy rate between groups. We concluded that treatment of ovarian cysts diagnosed by per rectum examination with prostaglandin (at time of diagnosis and 14 d later for cows that were not inseminated) was as effective as initial treatment with GnRH followed by prostaglandins 14 d later for cows that were not inseminated previously. Cows that were initially treated with prostaglandins also tended to become pregnant sooner.  相似文献   

8.
The objective was to compare the probability of pregnancy after fixed-time insemination in cows diagnosed as non-pregnant and re-inseminated following the Ovsynch protocol, with or without exogenous progesterone. Cows (n=415) used in this study originated from 25 farms. Upon diagnosis of non-pregnancy between 30 and 60 days after AI, cows were randomly assigned to receive either a progesterone releasing intravaginal device (PRID; n=208) or a placebo intravaginal device (PID; n=207). All cows received GnRH at enrollment (Day 0), PGF(2alpha) concurrent with intravaginal device removal 7 days later, GnRH on Day 9 and fixed-time insemination 16h later (Day 10). Cows observed in estrus prior to Day 7, had the device removed and were inseminated. Ovaries were examined by transrectal palpation at the time of enrollment and the prominent structures were assessed and recorded. Body condition score, lameness status, interval from previous insemination, and times bred at enrollment were recorded. At intravaginal device removal, the occurrence and intensity of vaginitis was determined according to the amount of debris on the device. Overall, the intravaginal device retention rate was 91%. A total of 5.2% of PID-treated cows and 2.9% of PRID-treated cows were detected in estrus within the 7 days treatment period. Pregnancy status was diagnosed between 30 and 56 days after insemination and all cows were followed for a minimum of 150 days after enrollment. Approximately 28% of cows had evidence of mild vaginitis in response to the intravaginal device, whereas 6% of cows had copious debris associated with the intravaginal device at removal. The probability of pregnancy after fixed-time insemination was 43.8% versus 34.9% in PRID-treated versus PID-treated animals. Exogenous progesterone provided through an intravaginal device to non-pregnant cows that had not displayed estrus improved the probability of pregnancy after fixed-time AI.  相似文献   

9.
The objective was to evaluate the effect of equine chorionic gonadotropin (eCG) and hCG post artificial insemination (AI) on fertility of lactating dairy cows. In Experiment 1, cows were either treated with eCG on Day 22 post AI (400 IU; n = 80) or left untreated (n = 84). On Day 29, pregnant cows were either treated with hCG (2500 IU; n = 32) or left untreated (n = 36). Pregnancy and progesterone were evaluated on Days 29 and 45. In Experiment 2, cows (n = 28) were either treated with eCG on Day 22 (n = 13) or left untreated (n = 15) and either treated with hCG on Day 29 (n = 14) or left untreated (n = 14). Blood sampling and ultrasonography were conducted between Days 22 and 45. In Experiment 3, cows were either treated with eCG on Day 22 post AI (n = 229) or left untreated (n = 241). Pregnancy was evaluated on Days 36 and 85. In Experiment 1, eCG on Day 22 increased (P < 0.02) the number of pregnant cows on Day 29 (50.0 vs. 33.3%) and on Day 45, the increase was higher (P < 0.01) in cows with timed AI (41.2 vs. 6.5%) than in cows AI at detected estrus (50.0 vs. 37.8%). Pregnancy losses were reduced by eCG and hCG, but increased in cows that did not receive eCG but were given hCG (P < 0.01). Treatment with hCG tended (P < 0.06) to increase progesterone in control cows, but not in cows treated with eCG. In Experiment 2, hCG increased (P < 0.01) the number of accessory CLs on Day 35 (28.5 vs. 0.0%) and tended (P < 0.07) to increase progesterone. In Experiment 3, eCG increased the number of pregnant cows (P < 0.05) on Days 36 and 85, but only in cows with low body condition (eCG = 45.6 and 43.5%; Control = 22.9 and 22.9%). In conclusion, eCG at 22 days post insemination increased fertility, primarily in cows with low body condition and reduced pregnancy losses when given 7 days before hCG; hCG induced accessory CLs and slightly increased progesterone, but hCG given in the absence of a prior eCG treatment reduced fertility.  相似文献   

10.
This study was designed to compare two timed insemination protocols, in which progesterone, GnRH and PGF2alpha were combined, with the Ovsynch protocol in presynchronized, early postpartum dairy cows. Reproductive performance was also evaluated according to whether cows showed high or low plasma progesterone concentration, at the onset of treatment. One hundred and six early postpartum dairy cows were presynchronized with two cloprostenol treatments given 14 days apart, and then assigned to one of the three treatment groups. Treatments for the synchronization of estrus in all three groups started 7 days after the second cloprostenol injection, which was considered Day 0 of the actual treatment regime. Cows in the control group (Ovsynch, n=30) were treated with GnRH on Day 0, PGF2alpha on Day 7, and were given a second dose of GnRH 32 h later. Cows in group PRID (n=45) were fitted with a progesterone releasing intravaginal device (PRID) for 9 days, and were given GnRH at the time of PRID insertion and PGF2alpha on Day 7. In group PRID/GnRH (n=31), cows received the same treatment as in the PRID group, but were given an additional GnRH injection 36 h after PRID removal. Cows were inseminated 16-20 h after the administration of the second GnRH dose in the Ovsynch group, and 56 h after PRID removal in the PRID and PRID/GnRH groups. Ovulation rate was determined on Day 11 postinsemination by detecting the presence of a corpus luteum in the ovaries. Lactation number, milk production, body condition at the onset of treatment and treatment regime were included as potential factors influencing ovulation and pregnancy after synchronization. Logistic regression analysis for cows with high and low progesterone concentration on treatment Day 0 revealed that none of the factors included in the models, except the interaction between progesterone and treatment regime, influenced the risk of ovulation and pregnancy significantly. In cows with high progesterone concentration at treatment onset, Ovsynch treatment resulted in a significantly improved pregnancy rate over values obtained following PRID or PRID/GnRH treatment. In cows with low progesterone concentration, PRID or PRID/GnRH treatment led to markedly increased ovulation and pregnancy rates with respect to Ovsynch treatment. These findings suggest the importance of establishing ovarian status in early postpartum dairy cows before starting a timed AI protocol, in terms of luteal activity assessed by blood progesterone.  相似文献   

11.
Embryonic mortality contributes to repeat-breeding in dairy cows; luteal insufficiency is a known cause of embryonic mortality. The objective of this study was to assess the efficacy of supplementation with exogenous progesterone for 14 days on pregnancy maintenance in inseminated repeat-breeder dairy cows. On Day 5 after insemination, treated cows ( n=143 ) received a modified PRID (i.e. without estradiol capsule), which was removed on Day 19. Control cows ( n=148 ) did not receive any treatment. Overall there was no effect of PRID supplementation on pregnancy rates. However, when the study population was stratified by parity and stage of lactation, PRID supplementation significantly improved pregnancy rate in first and second parity late lactation cows (risk ratio = 3.26; 95% CI 1.22, 8.69). Pregnancy rates did not differ between PRID-treated cows with ( n=81 ) and without vaginitis. Control cows tended ( P=0.077 ) to have a higher proportion of abortions than PRID-treated cows (7/50 versus 2/51, respectively). In conclusion, young late lactation repeat-breeder cows benefited from progesterone supplementation, in terms of maintaining pregnancy until traditional time of pregnancy diagnosis.  相似文献   

12.
The local relationship between the pregnant uterine horn and the CL during maternal recognition of pregnancy is well-documented. It continues beyond that time; pregnancies were maintained in lutectomized cows when CL were induced on the ovary ipsilateral, but not contralateral, to the uterine horn of pregnancy during Days 28-53. This study evaluated factors affecting maintenance of pregnancy by CL induced after Day 53, in lutectomized cows that had received exogenous progesterone from Day 29 to 15 days after induction of a CL. Twenty-four suckled beef cows were lutectomized on Day 29 of gestation; pregnancy was maintained with progesterone from two controlled internal drug releasing (CIDR) inserts, exchanged every 5 days. Beginning on Day 53, ovaries and viability of pregnancy were evaluated by ultrasonography every 5 days. When a follicle >or=10 mm in diameter was present ipsilateral to the fetus, each cow received 1,000 IU of hCG. Following induction of a CL (20 of 24), progesterone was reduced to a single CIDR for 5 days, then removed. Retention of pregnancy was confirmed by rectal palpation and calving. Cows with induced CL maintained pregnancy to term, including four with the CL contralateral to the fetus. Three cows failed to form normal CL by Day 98 and lost pregnancy after removal of exogenous progesterone. One cow that did not respond to hCG lost pregnancy during exogenous progesterone. In conclusion, CL induced after Day 53 maintained pregnancy to term, even when induced contralateral to the pregnant uterine horn.  相似文献   

13.
This study examined the influence of a GnRH agonist containing either 450 or 750 microg of deslorelin in an implant form or a gonadorelin injection (control) to induce ovulation in the Ovsynch protocol on pregnancy rates (PR), embryonic loss, and ovarian function in 593 lactating Holstein cows. Cows were given two injections of PGF2alpha 14 days apart, followed 14 days later by the Ovsynch protocol, and were timed artificially inseminated (TAI) at 68 +/- 3 days postpartum. Blood samples for determination of plasma progesterone concentrations were collected at 24 and 10 days prior to and 11 days after TAI. Pregnancy was diagnosed on Day 27 and reconfirmed on Day 41 after TAI. Non-pregnant, not re-inseminated cows at Day 27 had their ovaries examined by ultrasonography, and the number and size of follicles and presence of luteal tissue were determined. Simultaneously, these cows were re-synchronized with the Ovsynch protocol. Pregnancy during the re-synchronization period was determined between 35 and 41 days after insemination. On Day 27, PR were higher for control (39.0%) and deslorelin 450 microg (DESLORELIN 450) implant (41.3%) than for those receiving the deslorelin 750 microg (DESLORELIN 750) implant (27.5%; P<0.05). Pregnancy losses tended to decrease for DESLORELIN 450 compared with control (5.0% versus 12.7%; P<0.13). Plasma progesterone concentrations did not differ significantly among treatments. Deslorelin suppressed ovarian activity and decreased PR during the re-synchronization period compared with control. The percentage of non-pregnant animals that were re-inseminated by Day 27 was less for deslorelin compared with control. In conclusion, incorporation of an implant of the GnRH agonist deslorelin to induce ovulation in the Ovsynch protocol has the potential to reduce pregnancy losses, but the response was dependent upon implant concentration. Evaluation of lower doses to minimize the negative effects on subsequent fertility is warranted.  相似文献   

14.
Twin pregnancies represent a management problem in dairy cattle since the risk of pregnancy loss increases, and the profitability of the herd diminishes drastically as the frequency of twin births increases. The aim of this study was to monitor the development of 211 twin pregnancies in high producing dairy cows in order to determine the best time for an embryo reduction approach. Pregnancy was diagnosed by transrectal ultrasonography between 36 and 42 days after insemination. Animals were then subjected to weekly ultrasound examination until Day 90 of gestation or until pregnancy loss. Viability was determined by monitoring the embryonic/fetal heartbeat until Day 50 of pregnancy, and then by heartbeat or fetal movement detection. Eighty-six cows (40.8%) bore bilateral and 125 (59.2%) unilateral twin pregnancies. Embryo death was registered in one of the two embryos in 35 cows (16.6%), 33 of them at pregnancy diagnosis. Pregnancy loss occurred in 22 of these cows between 1 and 4 weeks later. Thus, 13 (6.2% of the total animals) cows, carrying one dead of the two embryos, maintained gestation. Total pregnancy loss before Day 90 of pregnancy (mean 69 +/- 14 days) was registered in 51 (24.2%) cows: 7 (8%) of bilateral pregnancies and 44 (35.2%) of unilateral pregnancies, and it was higher (P = 0.0001) for both right (32.4%, 24/74) and left (39.2%, 20/51) unilateral than for bilateral (8.1%, 7/86) twin pregnancies. The single embryo death rate was significantly (P = 0.02) lower for cows with bilateral twins (9.3%, 8/86) than for total cows with unilateral twins (21.6%, 27/125). By way of overall conclusion, embryo reduction can occur in dairy cattle, and the practical perspective remains that most embryonic mortality in twins (one of the two embryos) occurs around Days 35-40 of gestation, the period when pregnancy diagnosis is generally performed and when embryo reduction could be tried.  相似文献   

15.
The objectives of the experiment were to evaluate the efficacy of using progesterone concentrations in milk and palpation per rectum on days 21 or 22 postbreeding to estimate pregnancy and evaluate management practices; and to investigate physiological occurrences leading to incorrect diagnosis of pregnancy when serial samples of milk were collected. Of particular interest were indications of early embyronic death and insemination of cows not in estrus. Milk samples were collected at the afternoon milking of days 0 or 1 (day 0 = day of estrus), 9 or 10, 21 or 22 and 27 or 28 following breeding in 200 lactating dairy cows. Tentative diagnosis of pregnancy was made based on concentrations of progesterone in milk on days 21 and 22 alone and on days 21 or 22 and 27 or 28. In addition all cows were palpated per rectum on days 21 or 22 postbreeding and a tentative pregnancy diagnosis was made. Pregnancy was confirmed by examination of the genital tract per rectum between 35 and 50 days after breeding. Values of 4 ng/ml or greater and/or the presence of a mature corpus luteum were considered positive signs of pregnancy. Progesterone in milk ranged from 0.1 to 18 ng/ml. On days 0 or 1, 9 or 10, 21 or 22 and 27 or 28 concentrations of progesterone in milk averaged 1.5 +/- 0.3, 11.1 +/- 0.5, 12.0 +/- 0.4 12.5 +/- 0.5 ng/ml for pregnant cows. Corresponding samples from nonpregnant cows averaged 1.2 +/- 0.2, 10.3 +/- 0.4, 3.0 +/- 0.4, 6.8 +/- 0.6 ng/ml, respectively. Ninety-six and 104 cows were classified as pregnant and nonpregnant on days 21 or 22 as compared to 78 and 118 cows diagnosed as pregnant and nonpregnant on days 21 or 22 and 27 or 28 combined. Pregnancy detection by progesterone in milk on days 21 or 22 with pregnancy determined via rectal palpation 35 to 50 days postbreeding was 77 and 100% accurate for positive and negative diagnosis, respectively. The percent agreement using progesterone in milk on days 21 or 22 and 27 or 28 combined was 95 and 100%, respectively, for positive and negative diagnosis. Diagnosis based on rectal palpation 21 or 22 days postbreeding was 63 92 (69%) and 76 88 (87%) for pregnant and nonpregnant cows, respectively. Ten of the 200 cows had progesterone concentratins in milk of > 4 ng/ml at the time of breeding. Six of these cows were pregnant from a previous insemination. The other four cows were nonpregnant and were inseminated during the luteal phase of the cycle. In conclusion, measurement of progesterone in milk is a useful tool in early detection of pregnant and nonpregnant cows and may be useful in detecting reproductive problems in a dairy herd. It will probably be most useful when used in combination with later pregnancy diagnosis per rectum .  相似文献   

16.
To determine if the presence of the developing conceptus is associated with changes in intrafollicular concentrations of insulin-like growth factor-I (IGF-I), estradiol (E2) and/or progesterone during early pregnancy in cattle, either pregnant (n=16) or nonpregnant (n=15) cows were slaughtered on Day 10, 15 or 18 postestrus. Ovaries and follicular fluid were collected. Follicles were grouped by diameter: 1.0 to 3.9 mm (small; n=63), 4.0 to 7.9 mm (medium; n=128), and >/= 8.0 mm (large; n=38). The average diameter of large follicles was greater (P<0.05) in pregnant than in nonpregnant cows on Day 10, but on Day 18 it was greater (P<0.05) in nonpregnant than in pregnant cows (11.3 vs 9.7 mm). Status (pregnant vs nonpregnant) did not affect (P>0.10) follicular fluid progesterone nor IGF-I concentrations. In contrast, the status and days postestrus affected (P<0.05) follicular fluid E2 concentrations. Follicular fluid E2 levels in the three follicle size-categories on Day 10 did not differ (P>0.10) between pregnant and nonpregnant cows. However, on Days 15 and 18 postestrus, follicular fluid E2 concentrations in pregnant cows was lower (P<0.05) in large follicles than in nonpregnant cows. We conclude that the presence of a developing conceptus early in pregnancy may alter follicular growth and inhibit follicular E2 production in cattle. These effects appear to be mediated by factors other than IGF-I.  相似文献   

17.
The objectives were to determine the effects of one or three timed artificial insemination (AI) before natural service (NS) in lactating dairy cows not observed for detection of estrus on hazard of pregnancy, days nonpregnant, and 21-days cycle pregnancy rate. A total of 1050 lactating Holstein cows were subjected to a double Ovsynch program for their first postpartum AI. On the day of first AI (78 ± 3 days in milk), cows were blocked by parity and randomly assigned to receive either one timed AI (1TAI, n = 533) or three timed AI (3TAI, n = 517) before being exposed to NS. Cows assigned to 1TAI were exposed to bulls 7 days after the first AI. Nonpregnant cows in 3TAI were resynchronized with the Ovsynch protocol supplemented with progesterone twice, with intervals between AI of 42 days, before being exposed to NS 7 days after the third AI. Cows were evaluated for pregnancy 32 days after each timed AI, or every 28 days after being exposed to NS. Pregnant cows were re-examined for pregnancy 28 days later (i.e., 60-day gestation). Exposure to heat stress was categorized based on the first AI being performed during the hot or cool season, according to the temperature-humidity index. Body condition was scored at first AI. All cows were allowed a period of 231 days of breeding, after which nonpregnant cows were censored. Pregnancy to the first AI did not differ between 1TAI and 3TAI on Day 60 after insemination (30.8 vs. 33.5%). Cows receiving 3TAI had a 15% greater hazard of pregnancy and a 17% greater 21-days cycle pregnancy rate than 1TAI and these benefits originated from the first 84 days of breeding. These changes in rate of pregnancy reduced the median and mean days nonpregnant by 9 and 10 d, respectively. Despite the long inter-AI interval in cows subjected to 3TAI, reproductive performance was improved compared with a single timed AI and subsequent exposure to NS. In dairy herds that use a combination of AI and NS, allowing cows additional opportunities to AI before onset of breeding with bulls is expected to improve reproductive performance.  相似文献   

18.
Embryonic and fetal mortality reduce reproductive performance of lactating dairy cows. The objectives of this study were to reduce pregnancy loss by administering a deslorelin implant (GnRH agonist) during the late embryonic period, to reduce follicular growth, induce accessory corpora lutea, and increase plasma progesterone concentrations. Lactating dairy cows received an implant containing 2.1 mg of deslorelin (Deslorelin group; n = 89) or no treatment (Control group; n = 92) on Day 27 of pregnancy. Pregnancy, ovarian structures and plasma progesterone concentrations were determined on Days 27 and 45, and pregnancy was re-confirmed on Day 90. On Day 45, mean +/- S.E.M. numbers of class 2 (6-9 mm; 0.72+/-0.19) and class 3 (> or = 10 mm; 0.86 +/- 0.12) follicles for cows in the Deslorelin group were lower (P < 0.01) than the numbers of class 2 (1.90 +/- 0.18) and class 3 (1.92 +/- 0.12) follicles for cows in the Control group. On Day 45, the number of accessory corpora lutea for cows in the Deslorelin group (1.80 +/- 0.07) were greater (P < 0.01) than for cows in the Control group (1.31 +/- 0.07). On Day 45, plasma progesterone concentration was increased (P < 0.01) for cows in the Deslorelin group (8.03 +/- 0.33 ng/mL) compared to cows in the Control group (6.40 +/- 0.31 ng/mL). Pregnancy losses did not differ between Days 27 and 45 and Days 45 and 90 for cows in the Control (15.2 and 11.0%, respectively) and Deslorelin groups (20.2 and 10.5%, respectively). However, in the Deslorelin group, pregnancy loss between Days 45 and 90 was lower (P < 0.05) for cows that formed an accessory CL (0%) compared to cows that did not form an accessory CL (16.1%).  相似文献   

19.
Fifty-one cyclic beef cows were mated with fertile bulls. At 36 h after the start of oestrus, cows were assigned to receive sesame oil (controls) or progesterone (100 mg) on Days 1, 2, 3 and 4 of pregnancy. Peripheral plasma concentration of progesterone was measured until slaughter on Days 5 or 14. Cows were randomly assigned to be slaughtered on Days 5 or 14 or remain intact and palpated per rectum on Day 40 to verify pregnancy. Uteri on Days 5 and 14 were flushed for recovery of luminal protein and conceptus tissue. Conceptus and endometrial tissues were cultured with [3H]leucine and submitted to two-dimensional-PAGE and fluorography. Administration of progesterone increased peripheral plasma progesterone concentration on Day 2-5. Conceptuses recovered from progesterone-treated cows on Day 14 were advanced in development compared to conceptuses from control cows. Conceptuses recovered from progesterone-treated cows were viable as polypeptides associated with maintenance of pregnancy in cattle were synthesized and released at an earlier time and pregnancy was maintained beyond Day 40. Early progesterone stimulation altered the synthesis and release of polypeptides from endometrial explant cultures on Day 5. Results indicate a role of progesterone in the maternal regulation of conceptus growth and development in early pregnancy of cattle.  相似文献   

20.

Background

Results regarding the use of bovine somatotropin for enhancing fertility in dairy cattle are variable. Here, the hypothesis was tested that a single injection of a sustained-release preparation of bovine somatotropin (bST) during the preovulatory period would improve pregnancy success of lactating dairy cows at first service.

Results

The first experiment was conducted in a temperate region of Mexico. Cows inseminated following natural estrus or timed artificial insemination were given a single injection of bST or a placebo injection at insemination (n = 100 cows per group). There was no significant difference between bST and control groups in the proportion of inseminated cows diagnosed pregnant (29 vs 31% pregnant). The second experiment was performed during heat stress in Florida. Cows were subjected to an ovulation synchronization regimen for first insemination. Cows treated with bST received a single injection at 3 days before insemination. Controls received no additional treatment. As expected, bST did not increase vaginal temperature. Treatment with bST did not significantly increase the proportion of inseminated cows diagnosed pregnant although it was numerically greater for the bST group (24.2% vs 17.8%, 124–132 cows per group). There was a tendency (p = 0.10) for a smaller percent of control cows to have high plasma progesterone concentrations (≥ 1 ng/ml) at Day 7 after insemination than for bST-treated cows (72.6 vs 81.1%). When only cows that were successfully synchronized were considered, the magnitude of the absolute difference in the percentage of inseminated cows that were diagnosed pregnant between bST and control cows was reduced (24.8 vs 22.4% pregnant for bST and control).

Conclusion

Results failed to indicate a beneficial effect of bST treatment on fertility of lactating dairy cows.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号