首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role of Toll-like receptors (TLRs) in innate immunity and their ability to recognise microbial products has been well characterised. TLRs are also able to recognise endogenous molecules which are released upon cell damage and necrosis and have been shown to be present in numerous autoimmune diseases. Therefore, the release of endogenous TLR ligands during inflammation and consequently the activation of TLR signalling pathways may be one mechanism initiating and driving autoimmune diseases. An increasing body of circumstantial evidence implicates a role of TLR signalling in systemic lupus erythematosus (SLE), atherosclerosis, asthma, type 1 diabetes, multiple sclerosis, bowl inflammation and rheumatoid arthritis (RA). Although at present their involvement is not comprehensively defined. However, future therapies targeting individual TLRs or their signalling transducers may provide a more specific way of treating inflammatory diseases without global suppression of the immune system.  相似文献   

2.
Toll-like receptors (TLRs), a family of pattern recognition receptors, recognize and respond to conserved components of microbes and play a crucial role in both innate and adaptive immunity. In addition to binding exogenous ligands derived from pathogens, TLRs interact with endogenous molecules released from damaged tissues or dead cells and regulate many sterile inflammation processes. Putative endogenous TLR ligands include proteins and peptides, polysaccharides and proteoglycan, nucleic acids and phospholipids, which are cellular components, particularly extracellular matrix degradation products. Accumulating evidence demonstrates that endogenous ligand-mediated TLR signalling is involved in pathological conditions such as tissue injury, repair and regeneration; autoimmune diseases and tumorigenesis. The ability of TLRs to recognize endogenous stimulators appears to be essential to their function in regulating non-infectious inflammation. In this review, we summarize current knowledge of endogenous TLR ligands and discuss the biological significance of TLR signalling triggered by endogenous ligands in several sterile inflammation conditions.  相似文献   

3.
Toll-like receptors (TLRs) are found on the membranes of pattern recognition receptors and not only play important roles in activating immune responses but are also involved in the pathogenesis of inflammatory disease, injury and cancer. Furthermore, TLRs are also able to recognize endogenous alarmins released by damaged tissue and necrosis and/or apoptotic cells and are present in numerous autoimmune diseases. Therefore, the release of endogenous TLR ligands plays an important role in initiating and driving inflammatory diseases. Increasing data suggest a role for TLR signaling in rheumatoid arthritis, which is an autoimmune disease. Although their involvement is not comprehensively understood, the TLRs signaling transducers may provide potential therapeutic targets.  相似文献   

4.

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation of the joints and the presence of autoantibodies directed against proteins containing the non-standard arginine-derived amino acid citrulline. The protein fibrinogen, which has an essential role in blood clotting, is one of the most prominent citrullinated autoantigens in RA, particularly because it can be found in the inflamed tissue of affected joints. Here, we set out to analyze the presence of citrullinated endogenous peptides in the synovial fluid of RA and arthritic control patients.

Methods

Endogenous peptides were isolated from the synovial fluid of RA patients and controls by filtration and solid phase extraction. The peptides were identified and quantified using high-resolution liquid chromatography-mass spectrometry.

Results

Our data reveal that the synovial fluid of RA patients contains soluble endogenous peptides, derived from fibrinogen, containing significant amounts of citrulline residues and, in some cases, also phosphorylated serine. Several citrullinated peptides are found to be more abundantly present in the synovial fluid of RA patients compared to patients suffering from other inflammatory diseases affecting the joints.

Conclusions

The increased presence of citrullinated peptides in RA patients points toward a possible specific role of these peptides in the immune response at the basis of the recognition of citrullinated peptides and proteins by RA patient autoantibodies.  相似文献   

5.
The system of signaling pattern recognition receptors was studied in eight cosmonauts at the ages from 35 to 56 years before and after long-term space flights (SFs) on board the International Space Station (ISS). The peripheral blood samples were analyzed for the content of monocytes and granulocytes that express the signaling pattern recognition Toll-like receptors (TLRs) with surface (TLR1, TLR2, TLR4, TLR5, and TLR6) and intracellular (TLR3, TLR8, and TLR9) localization. The serum concentration of basic ligands of TLR2 (HSP60) and TLR4 (HSP70 and HMGB1) were also measured. The results of the studies showed a growth of the HSP60, HSP70, and HMGB1 concentrations on the first day after long-term flight. The increase in the concentration of endogenous ligands was followed by a growth of the number of both monocytes and granulocytes that express the respective pattern recognition receptors, TLR2 and TLR4, in the overwhelming majority of the examined cosmonauts. Thesse relationships suggest that changes in the system of signaling pattern recognition receptors may be due to the prevailing influence of endogenous ligands in response to the effect of long-term spaceflight factors on the human body.  相似文献   

6.
Toll-like receptors (TLRs) have a crucial role in the early detection of pathogen-associated molecular patterns and the subsequent activation of the adaptive immune response. Whether TLRs also have an important role in the recognition of endogenous ligands has been more controversial. Numerous in vitro studies have documented activation of both autoreactive B cells and plasmacytoid dendritic cells by mammalian TLR ligands. The issue of whether these in vitro observations translate to an in vivo role for TLRs in either the initiation or the progression of systemic autoimmune disease is a subject of intense research; data are beginning to emerge showing that this is the case.  相似文献   

7.
Macrophage migration inhibitory factor (MIF) is clearly associated with rheumatoid arthritis (RA) disease severity. However, the regulation of MIF during the course of RA has not been subjected to similar scientific scrutiny. The aim of our study was to investigate the role of various Toll-like receptors (TLRs) and inflammatory mediators on MIF production by dendritic cells (DCs) in healthy controls and RA patients. DCs were cultured from 12 healthy donors and 12 RA patients. Triggering via TLR mediated pathways was achieved using various TLR specific ligands alone or in combination: Pam3Cys for TLR2, LPS and recombinant extra domain A containing fibronectin for TLR4 and Poly(I:C) and R848 for TLR3 and TLR7, respectively. In addition, iDCs from healthy controls were incubated with various cytokines, RANKL and CD40L for 48 h. MIF levels were measured using an ELISA assay. Stimulation of DCs by TLR4 ligands resulted in higher MIF production compared to immature DCs from healthy controls (p<0.002) and RA patients (p<0.002). DCs from RA patients produced higher MIF levels than healthy controls both at the immature stage (p<0.04) as well after full maturation via TLR2 (p<0.04) and TLR4 (p<0.001) triggering. Incubation with TLR3 and TLR7 ligands resulted in a significantly decreased secretion of MIF in RA patients and controls. Simultaneous incubation of TLR4 with either TLR3 or TLR7 ligands resulted in a decrease of MIF secretion when compared to TLR4 stimulation alone. The secretion of MIF increased when DCs were stimulated with TNF-alpha, RANKL and CD40L. The secretion of MIF by dendritic cells is differentially regulated by TLRs. In addition, TNF-alpha, RANKL, and CD40L augment MIF production by DCs and thus play a potential role in the amplification of the inflammatory loop in RA.  相似文献   

8.
Abstract

As we learn more about the biology of the Toll-like receptors (TLRs), a wide range of molecules that can activate this fascinating family of pattern recognition receptors emerges. In addition to conserved pathogenic components, endogenous danger signals created upon tissue damage are also sensed by TLRs. Detection of these types of stimuli results in TLR mediated inflammation that is vital to fight pathogenic invasion and drive tissue repair. Aberrant activation of TLRs by pathogenic and endogenous ligands has also been linked with the pathogenesis of an increasing number of infectious and autoimmune diseases, respectively. Most recently, allergen activation of TLRs has also been described, creating a third broad class of TLR stimulus that has helped to shed light on the pathogenesis of allergic disease. To date, microbial activation of TLRs remains best characterized. Each member of the TLR family senses a specific subset of pathogenic ligands, pathogen associated molecular patterns (PAMPS), and a wealth of structural and biochemical data continues to reveal the molecular mechanisms of TLR activation by PAMPs, and to demonstrate how receptor specificity is achieved. In contrast, the mechanisms by which endogenous molecules and allergens activate TLRs remain much more mysterious. Here, we provide an overview of our current knowledge of how very diverse stimuli activate the same TLRs and the structural basis of these modes of immunity.  相似文献   

9.
Human lymphatic endothelial cells express multiple functional TLRs   总被引:1,自引:0,他引:1  
The lymphatic endothelium is the preferred route for the drainage of interstitial fluid from tissues and also serves as a conduit for peripheral dendritic cells (DCs) to reach draining lymph nodes. Lymphatic endothelial cells (LECs) are known to produce chemokines that recruit Ag-loaded DCs to lymphatic vessels and therefore are likely to regulate the migration of DCs to lymph nodes. TLRs are immune receptors that recognize pathogen associated molecular patterns and then signal and stimulate production of inflammatory chemokines and cytokines that contribute to innate and adaptive immune responses. TLRs are known to be expressed by a wide variety of cell types including leukocytes, epithelial cells, and endothelial cells. Because the TLR expression profile of LECs remains largely unexamined, we have undertaken a comprehensive study of the expression of TLR1-10 mRNAs and protein in primary human dermal (HD) and lung LECs as well as in htert-HDLECs, which display a longer life-span than HDLECs. We found that all three cell types expressed TLR1-6 and TLR9. The responsiveness of these LECs to a panel of ligands for TLR1-9 was measured by real-time RT-PCR, ELISA, and flow cytometry, and revealed that the LECs responded to most but not all TLR ligands by increasing expression of inflammatory chemokines, cytokines, and adhesion molecules. These findings provide insight into the ability of cells of the lymphatic vasculature to respond to pathogens and potential vaccine adjuvants and shape peripheral environments in which DCs will acquire Ag and environmental cues.  相似文献   

10.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants. Each TLR can activate DCs in a similar, but distinct manner. For example, TLRs can be divided into subgroups according to their type I interferon (IFN) inducing ability. TLR2 cannot induce IFN-alpha or IFN-beta, but TLR4 can lead to IFN-beta production. Meanwhile, TLR3, TLR7, and TLR9 can induce both IFN-alpha and IFN-beta. Recent evidences suggest that cytoplamic adapters for TLRs are especially crucial for this functional heterogeneity. Clarifying how DC function is regulated by TLRs should provide us with critical information for manipulating the host defense against a variety of diseases.  相似文献   

11.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

12.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants.  相似文献   

13.
党旖旎  李军 《生物磁学》2013,(26):5197-5200,5186
树突状细胞(dendriticcells,DCs)是目前已知功能最强的抗原提呈细胞(antigenpresentingcell,APC),是介导固有免疫和适应性免疫的桥梁,在机体抗感染、抗肿瘤等方面发挥重要作用。Toll样受体(toll.1ikereceptor,TLRs)是一类重要的模式识别受体(paRemrecognitionreceptors,PRRs),可识别入侵的病原体相关分子模式(pathogen-associatedmoleculepatterns,PAMPs),通过招募接头蛋白、活化蛋白激酶和激活转录因子进行信号传导,从而引起效应细胞的活化和促炎因子的释放。不同亚型的DCs分布有不同的TLRs,多种TLRs可识别外来入侵的病原体成分,发挥重要的免疫学作用:诱导DCs分化成熟,摄取递呈抗原,促进DCs分泌多种细胞因子发挥作用。在炎症、病毒感染、自身免疫性疾病和肿瘤等疾病状态下,DCs表面TLRs的表达上调或下调,并且存在功能障碍,可影响DCs的分化成熟,导致其功能低下,这与疾病的发生和发展密切相关。本文综述了TLRs及其信号通路对树突状细胞的活化及功能的影响。  相似文献   

14.
Dendritic cells (DCs) are capable of cross-presenting exogenous Ag to CD8(+) CTLs. Detection of microbial products by Toll-like receptors (TLRs) leads to activation of DCs and subsequent orchestration of an adaptive immune response. We hypothesized that microbial TLR ligands could activate DCs to cross-present Ag to CTLs. Using DCs and CTLs in an in vitro cross-presentation system, we show that a subset of microbial TLR ligands, namely ligands of TLR3 (poly(inosinic-cytidylic) acid) and TLR9 (immunostimulatory CpG DNA), induces cross-presentation. In contrast to presentation of Ag to CD4(+) T cells by immature DCs, TLR-induced cross-presentation is mediated by mature DCs, is independent of endosomal acidification, and relies on cytosolic Ag processing machinery.  相似文献   

15.
16.
Han S  Koo J  Bae J  Kim S  Baik S  Kim MY 《BMB reports》2011,44(2):129-134
Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.  相似文献   

17.
Synovial tissue of patients with rheumatoid arthritis (RA) spontaneously produces several cytokines, of which a fundamental role in joint inflammation and destruction has been established. However, the factors sustaining this phenomenon remain poorly understood. In a recent report, blockade of Toll-like receptor 2 (TLR2) was found to inhibit the spontaneous release of inflammatory cytokines by intact RA synovial explant cultures. Adding to the recent evidence implicating other TLRs (in particular, TLR4), this observation highlights the potential of TLRs as therapeutic targets to suppress the local production of multiple cytokines and to control the chronic inflammatory loop in RA.  相似文献   

18.
A major neurotransmitter dopamine transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1-D5. Several studies have shown that dopamine not only mediates interactions into the nervous system, but can contribute to the modulation of immunity via receptors expressed on immune cells. We have previously shown an autocrine/paracrine release of dopamine by dendritic cells (DCs) during Ag presentation to naive CD4(+) T cells and found efficacious results of a D1-like receptor antagonist SCH-23390 in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis and in the NOD mouse model of type I diabetes, with inhibition of Th17 response. This study aimed to assess the role of dopaminergic signaling in Th17-mediated immune responses and in the pathogenesis of rheumatoid arthritis (RA). In human naive CD4(+) T cells, dopamine increased IL-6-dependent IL-17 production via D1-like receptors, in response to anti-CD3 plus anti-CD28 mAb. Furthermore, dopamine was localized with DCs in the synovial tissue of RA patients and significantly increased in RA synovial fluid. In the RA synovial/SCID mouse chimera model, although a selective D2-like receptor antagonist haloperidol significantly induced accumulation of IL-6(+) and IL-17(+) T cells with exacerbated cartilage destruction, SCH-23390 strongly suppressed these responses. Taken together, these findings indicate that dopamine released by DCs induces IL-6-Th17 axis and causes aggravation of synovial inflammation of RA, which is the first time, to our knowledge, that actual evidence has shown the pathological relevance of dopaminergic signaling with RA.  相似文献   

19.
Pulmonary arterial hypertension (PAH) is a rare but fatal condition in which raised pulmonary vascular resistance leads to right heart failure and death. Endothelin-1 is a potent endogenous vasoconstrictor, which is considered to be central to many of the events that lead to PAH, and is an important therapeutic target in the treatment of the condition. In many cases of PAH, the aetiology is unknown but inflammation is increasingly thought to play an important role and viruses have been implicated in the development of disease. The Toll Like Receptors (TLRs) play a key role in innate immune responses by initiating specific anti-bacterial and anti-viral defences in recognition of signature molecular motifs on the surface of invading pathogens. In this study, we set out to examine the expression of bacterial and viral TLRs in human pulmonary artery smooth muscle cells and to establish whether their activation could be relevant to PAH. We found that the viral TLR3 and bacterial TLRs 4 and 6 were most abundantly expressed in human pulmonary artery smooth muscle cells. Using specific TLR ligands, we found that activation of TLRs 3 and 4 resulted in IL-8 release by human pulmonary artery smooth muscle cells but that only TLR3 stimulation resulted in IP10 and endothelin-1 release. These data suggest that human pulmonary artery smooth muscle cells express significant levels of viral TLR3 and respond to its activation by releasing endothelin-1. This may have importance in understanding the association between viruses and the development of PAH.  相似文献   

20.
TLRs are involved in innate cell activation by conserved structures expressed by microorganisms. Human T cells express the mRNA encoding most of TLRs. Therefore, we tested whether some TLR ligands may modulate the function of highly purified human CD4+ T lymphocytes. We report that, in the absence of APCs, flagellin (a TLR5 ligand) and R-848 (a TLR7/8 ligand) synergized with suboptimal concentrations of TCR-dependent (anti-CD3 mAb) or -independent stimuli (anti-CD2 mAbs or IL-2) to up-regulate proliferation and IFN-gamma, IL-8, and IL-10 but not IL-4 production by human CD4+ T cells. No effect of poly(I:C) and LPS, ligands for TLR3 and TLR4, respectively, was detected. We also observed that CD4+CD45RO+ memory T cell responses to TLR ligands were more potent than those observed with CD4+CD45RA+ naive T cells. Moreover, among the memory T cells, CCR7- effector cells were more sensitive to TLR ligands than CCR7+ central memory cells. These data demonstrate for the first time a direct effect of TLR5 and TLR7/8 ligands on human T cells, and highlight an innate arm in T cell functions. They also suggest that some components from invading microorganisms may directly stimulate effector memory T cells located in tissues by up-regulating cytokine and chemokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号